Mistral: Mistral Small 3 (free)

mistralai/mistral-small-24b-instruct-2501:free

Created Jan 30, 202532,768 context
$0/M input tokens$0/M output tokens

Mistral Small 3 is a 24B-parameter language model optimized for low-latency performance across common AI tasks. Released under the Apache 2.0 license, it features both pre-trained and instruction-tuned versions designed for efficient local deployment.

The model achieves 81% accuracy on the MMLU benchmark and performs competitively with larger models like Llama 3.3 70B and Qwen 32B, while operating at three times the speed on equivalent hardware. Read the blog post about the model here.

Sample code and API for Mistral Small 3 (free)

OpenRouter normalizes requests and responses across providers for you.

OpenRouter provides an OpenAI-compatible completion API to 300+ models & providers that you can call directly, or using the OpenAI SDK. Additionally, some third-party SDKs are available.

In the examples below, the OpenRouter-specific headers are optional. Setting them allows your app to appear on the OpenRouter leaderboards.

from openai import OpenAI

client = OpenAI(
  base_url="https://openrouter.ai/api/v1",
  api_key="<OPENROUTER_API_KEY>",
)

completion = client.chat.completions.create(
  extra_headers={
    "HTTP-Referer": "<YOUR_SITE_URL>", # Optional. Site URL for rankings on openrouter.ai.
    "X-Title": "<YOUR_SITE_NAME>", # Optional. Site title for rankings on openrouter.ai.
  },
  extra_body={},
  model="mistralai/mistral-small-24b-instruct-2501:free",
  messages=[
    {
      "role": "user",
      "content": "What is the meaning of life?"
    }
  ]
)
print(completion.choices[0].message.content)

Using third-party SDKs

For information about using third-party SDKs and frameworks with OpenRouter, please see our frameworks documentation.

See the Request docs for all possible fields, and Parameters for explanations of specific sampling parameters.

    Mistral: Mistral Small 3 (free) – Run with an API | OpenRouter