Skip to content
  1.  
  2. © 2023 – 2025 OpenRouter, Inc
    Favicon for WandB

    Weights & Biases

    Browse models provided by Weights & Biases (Terms of Service)

    8 models

    Tokens processed on OpenRouter

    • DeepSeek: DeepSeek V3.1DeepSeek V3.1

      DeepSeek-V3.1 is a large hybrid reasoning model (671B parameters, 37B active) that supports both thinking and non-thinking modes via prompt templates. It extends the DeepSeek-V3 base with a two-phase long-context training process, reaching up to 128K tokens, and uses FP8 microscaling for efficient inference. Users can control the reasoning behaviour with the reasoning enabled boolean. Learn more in our docs The model improves tool use, code generation, and reasoning efficiency, achieving performance comparable to DeepSeek-R1 on difficult benchmarks while responding more quickly. It supports structured tool calling, code agents, and search agents, making it suitable for research, coding, and agentic workflows. It succeeds the DeepSeek V3-0324 model and performs well on a variety of tasks.

    by deepseek131K context$0.55/M input tokens$1.65/M output tokens
  3. OpenAI: gpt-oss-120bgpt-oss-120b

    gpt-oss-120b is an open-weight, 117B-parameter Mixture-of-Experts (MoE) language model from OpenAI designed for high-reasoning, agentic, and general-purpose production use cases. It activates 5.1B parameters per forward pass and is optimized to run on a single H100 GPU with native MXFP4 quantization. The model supports configurable reasoning depth, full chain-of-thought access, and native tool use, including function calling, browsing, and structured output generation.

    by openai131K context$0.15/M input tokens$0.60/M output tokens
  4. OpenAI: gpt-oss-20bgpt-oss-20b

    gpt-oss-20b is an open-weight 21B parameter model released by OpenAI under the Apache 2.0 license. It uses a Mixture-of-Experts (MoE) architecture with 3.6B active parameters per forward pass, optimized for lower-latency inference and deployability on consumer or single-GPU hardware. The model is trained in OpenAI’s Harmony response format and supports reasoning level configuration, fine-tuning, and agentic capabilities including function calling, tool use, and structured outputs.

    by openai131K context$0.05/M input tokens$0.20/M output tokens
  5. Z.AI: GLM 4.5GLM 4.5

    GLM-4.5 is our latest flagship foundation model, purpose-built for agent-based applications. It leverages a Mixture-of-Experts (MoE) architecture and supports a context length of up to 128k tokens. GLM-4.5 delivers significantly enhanced capabilities in reasoning, code generation, and agent alignment. It supports a hybrid inference mode with two options, a "thinking mode" designed for complex reasoning and tool use, and a "non-thinking mode" optimized for instant responses. Users can control the reasoning behaviour with the reasoning enabled boolean. Learn more in our docs

    by z-ai131K context$0.55/M input tokens$2/M output tokens
  6. Qwen: Qwen3 Coder 480B A35BQwen3 Coder 480B A35B

    Qwen3-Coder-480B-A35B-Instruct is a Mixture-of-Experts (MoE) code generation model developed by the Qwen team. It is optimized for agentic coding tasks such as function calling, tool use, and long-context reasoning over repositories. The model features 480 billion total parameters, with 35 billion active per forward pass (8 out of 160 experts). Pricing for the Alibaba endpoints varies by context length. Once a request is greater than 128k input tokens, the higher pricing is used.

    by qwen1.05M context$1/M input tokens$1.50/M output tokens
  7. Qwen: Qwen3 235B A22B Instruct 2507Qwen3 235B A22B Instruct 2507

    Qwen3-235B-A22B-Instruct-2507 is a multilingual, instruction-tuned mixture-of-experts language model based on the Qwen3-235B architecture, with 22B active parameters per forward pass. It is optimized for general-purpose text generation, including instruction following, logical reasoning, math, code, and tool usage. The model supports a native 262K context length and does not implement "thinking mode" (<think> blocks). Compared to its base variant, this version delivers significant gains in knowledge coverage, long-context reasoning, coding benchmarks, and alignment with open-ended tasks. It is particularly strong on multilingual understanding, math reasoning (e.g., AIME, HMMT), and alignment evaluations like Arena-Hard and WritingBench.

    by qwen262K context$0.10/M input tokens$0.10/M output tokens
  8. DeepSeek: DeepSeek V3 0324DeepSeek V3 0324

    DeepSeek V3, a 685B-parameter, mixture-of-experts model, is the latest iteration of the flagship chat model family from the DeepSeek team. It succeeds the DeepSeek V3 model and performs really well on a variety of tasks.

    by deepseek131K context$1.14/M input tokens$2.75/M output tokens
  9. Meta: Llama 3.3 70B InstructLlama 3.3 70B Instruct

    The Meta Llama 3.3 multilingual large language model (LLM) is a pretrained and instruction tuned generative model in 70B (text in/text out). The Llama 3.3 instruction tuned text only model is optimized for multilingual dialogue use cases and outperforms many of the available open source and closed chat models on common industry benchmarks. Supported languages: English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai. Model Card

    by meta-llama131K context$0.71/M input tokens$0.71/M output tokens