Note: This model is currently experimental and not suitable for production use-cases, and may be heavily rate-limited.
Sample code and API for Gemini Pro 1.5 Experimental
OpenRouter normalizes requests and responses across providers for you.
To get started, you can use Gemini Pro 1.5 Experimental via API like this:
fetch("https://openrouter.ai/api/v1/chat/completions",{ method:"POST", headers:{"Authorization":`Bearer ${OPENROUTER_API_KEY}`,"HTTP-Referer":`${YOUR_SITE_URL}`,// Optional, for including your app on openrouter.ai rankings."X-Title":`${YOUR_SITE_NAME}`,// Optional. Shows in rankings on openrouter.ai."Content-Type":"application/json"}, body:JSON.stringify({"model":"google/gemini-pro-1.5-exp","messages":[{"role":"user","content":"What is the meaning of life?"},],})});
You can also use OpenRouter with OpenAI's client API:
import OpenAI from"openai"const openai =newOpenAI({ baseURL:"https://openrouter.ai/api/v1", apiKey: $OPENROUTER_API_KEY, defaultHeaders:{"HTTP-Referer": $YOUR_SITE_URL,// Optional, for including your app on openrouter.ai rankings."X-Title": $YOUR_SITE_NAME,// Optional. Shows in rankings on openrouter.ai.}})asyncfunctionmain(){const completion =await openai.chat.completions.create({ model:"google/gemini-pro-1.5-exp", messages:[{ role:"user", content:"Say this is a test"}],})console.log(completion.choices[0].message)}main()
See the Request docs for all possible parameters, and Parameters for recommended values.