Skip to content
  1.  
  2. © 2023 – 2025 OpenRouter, Inc
    Favicon for GMICloud

    GMICloud

    Browse models provided by GMICloud (Terms of Service)

    8 models

    Tokens processed on OpenRouter

    • MoonshotAI: Kimi K2 ThinkingKimi K2 Thinking

      Kimi K2 Thinking is Moonshot AI’s most advanced open reasoning model to date, extending the K2 series into agentic, long-horizon reasoning. Built on the trillion-parameter Mixture-of-Experts (MoE) architecture introduced in Kimi K2, it activates 32 billion parameters per forward pass and supports 256 k-token context windows. The model is optimized for persistent step-by-step thought, dynamic tool invocation, and complex reasoning workflows that span hundreds of turns. It interleaves step-by-step reasoning with tool use, enabling autonomous research, coding, and writing that can persist for hundreds of sequential actions without drift. It sets new open-source benchmarks on HLE, BrowseComp, SWE-Multilingual, and LiveCodeBench, while maintaining stable multi-agent behavior through 200–300 tool calls. Built on a large-scale MoE architecture with MuonClip optimization, it combines strong reasoning depth with high inference efficiency for demanding agentic and analytical tasks.

    by moonshotai262K context$0.80/M input tokens$1.20/M output tokens
  3. Qwen: Qwen3 Next 80B A3B InstructQwen3 Next 80B A3B Instruct

    Qwen3-Next-80B-A3B-Instruct is an instruction-tuned chat model in the Qwen3-Next series optimized for fast, stable responses without “thinking” traces. It targets complex tasks across reasoning, code generation, knowledge QA, and multilingual use, while remaining robust on alignment and formatting. Compared with prior Qwen3 instruct variants, it focuses on higher throughput and stability on ultra-long inputs and multi-turn dialogues, making it well-suited for RAG, tool use, and agentic workflows that require consistent final answers rather than visible chain-of-thought. The model employs scaling-efficient training and decoding to improve parameter efficiency and inference speed, and has been validated on a broad set of public benchmarks where it reaches or approaches larger Qwen3 systems in several categories while outperforming earlier mid-sized baselines. It is best used as a general assistant, code helper, and long-context task solver in production settings where deterministic, instruction-following outputs are preferred.

    by qwen262K context$0.15/M input tokens$1.50/M output tokens
  4. DeepSeek: DeepSeek V3.1DeepSeek V3.1

    DeepSeek-V3.1 is a large hybrid reasoning model (671B parameters, 37B active) that supports both thinking and non-thinking modes via prompt templates. It extends the DeepSeek-V3 base with a two-phase long-context training process, reaching up to 128K tokens, and uses FP8 microscaling for efficient inference. Users can control the reasoning behaviour with the reasoning enabled boolean. Learn more in our docs The model improves tool use, code generation, and reasoning efficiency, achieving performance comparable to DeepSeek-R1 on difficult benchmarks while responding more quickly. It supports structured tool calling, code agents, and search agents, making it suitable for research, coding, and agentic workflows. It succeeds the DeepSeek V3-0324 model and performs well on a variety of tasks.

    by deepseek131K context$0.27/M input tokens$1/M output tokens
  5. OpenAI: gpt-oss-120bgpt-oss-120b

    gpt-oss-120b is an open-weight, 117B-parameter Mixture-of-Experts (MoE) language model from OpenAI designed for high-reasoning, agentic, and general-purpose production use cases. It activates 5.1B parameters per forward pass and is optimized to run on a single H100 GPU with native MXFP4 quantization. The model supports configurable reasoning depth, full chain-of-thought access, and native tool use, including function calling, browsing, and structured output generation.

    by openai131K context$0.05/M input tokens$0.25/M output tokens
  6. Qwen: Qwen3 235B A22B Thinking 2507Qwen3 235B A22B Thinking 2507

    Qwen3-235B-A22B-Thinking-2507 is a high-performance, open-weight Mixture-of-Experts (MoE) language model optimized for complex reasoning tasks. It activates 22B of its 235B parameters per forward pass and natively supports up to 262,144 tokens of context. This "thinking-only" variant enhances structured logical reasoning, mathematics, science, and long-form generation, showing strong benchmark performance across AIME, SuperGPQA, LiveCodeBench, and MMLU-Redux. It enforces a special reasoning mode (</think>) and is designed for high-token outputs (up to 81,920 tokens) in challenging domains. The model is instruction-tuned and excels at step-by-step reasoning, tool use, agentic workflows, and multilingual tasks. This release represents the most capable open-source variant in the Qwen3-235B series, surpassing many closed models in structured reasoning use cases.

    by qwen262K context$0.60/M input tokens$3/M output tokens
  7. Meta: Llama 4 ScoutLlama 4 Scout

    Llama 4 Scout 17B Instruct (16E) is a mixture-of-experts (MoE) language model developed by Meta, activating 17 billion parameters out of a total of 109B. It supports native multimodal input (text and image) and multilingual output (text and code) across 12 supported languages. Designed for assistant-style interaction and visual reasoning, Scout uses 16 experts per forward pass and features a context length of 10 million tokens, with a training corpus of ~40 trillion tokens. Built for high efficiency and local or commercial deployment, Llama 4 Scout incorporates early fusion for seamless modality integration. It is instruction-tuned for use in multilingual chat, captioning, and image understanding tasks. Released under the Llama 4 Community License, it was last trained on data up to August 2024 and launched publicly on April 5, 2025.

    by meta-llama10M context$0.08/M input tokens$0.50/M output tokens
  8. DeepSeek: DeepSeek V3 0324DeepSeek V3 0324

    DeepSeek V3, a 685B-parameter, mixture-of-experts model, is the latest iteration of the flagship chat model family from the DeepSeek team. It succeeds the DeepSeek V3 model and performs really well on a variety of tasks.

    by deepseek131K context$0.28/M input tokens$0.88/M output tokens
  9. Meta: Llama 3.3 70B InstructLlama 3.3 70B Instruct

    The Meta Llama 3.3 multilingual large language model (LLM) is a pretrained and instruction tuned generative model in 70B (text in/text out). The Llama 3.3 instruction tuned text only model is optimized for multilingual dialogue use cases and outperforms many of the available open source and closed chat models on common industry benchmarks. Supported languages: English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai. Model Card

    by meta-llama131K context$0.25/M input tokens$0.75/M output tokens