Skip to content
  1.  
  2. © 2023 – 2025 OpenRouter, Inc
    Favicon for Google

    Google Vertex

    Browse models provided by Google Vertex (Terms of Service)

    36 models

    Tokens processed on OpenRouter

    • Anthropic: Claude Haiku 4.5Claude Haiku 4.5

      Claude Haiku 4.5 is Anthropic’s fastest and most efficient model, delivering near-frontier intelligence at a fraction of the cost and latency of larger Claude models. Matching Claude Sonnet 4’s performance across reasoning, coding, and computer-use tasks, Haiku 4.5 brings frontier-level capability to real-time and high-volume applications. It introduces extended thinking to the Haiku line; enabling controllable reasoning depth, summarized or interleaved thought output, and tool-assisted workflows with full support for coding, bash, web search, and computer-use tools. Scoring >73% on SWE-bench Verified, Haiku 4.5 ranks among the world’s best coding models while maintaining exceptional responsiveness for sub-agents, parallelized execution, and scaled deployment.

      by anthropic
    200K context
    $1/M input tokens$5/M output tokens
  3. Google: Gemini 2.5 Flash Image (Nano Banana)Gemini 2.5 Flash Image (Nano Banana)

    Gemini 2.5 Flash Image, a.k.a. "Nano Banana," is now generally available. It is a state of the art image generation model with contextual understanding. It is capable of image generation, edits, and multi-turn conversations. Aspect ratios can be controlled with the image_config API Parameter

    by google33K context$0.30/M input tokens$2.50/M output tokens$1.238/K input imgs$0.03/K output imgs
  4. Anthropic: Claude Sonnet 4.5Claude Sonnet 4.5

    Claude Sonnet 4.5 is Anthropic’s most advanced Sonnet model to date, optimized for real-world agents and coding workflows. It delivers state-of-the-art performance on coding benchmarks such as SWE-bench Verified, with improvements across system design, code security, and specification adherence. The model is designed for extended autonomous operation, maintaining task continuity across sessions and providing fact-based progress tracking. Sonnet 4.5 also introduces stronger agentic capabilities, including improved tool orchestration, speculative parallel execution, and more efficient context and memory management. With enhanced context tracking and awareness of token usage across tool calls, it is particularly well-suited for multi-context and long-running workflows. Use cases span software engineering, cybersecurity, financial analysis, research agents, and other domains requiring sustained reasoning and tool use.

    by anthropic1M context$3/M input tokens$15/M output tokens
  5. Google: Gemini 2.5 Flash Preview 09-2025Gemini 2.5 Flash Preview 09-2025

    Gemini 2.5 Flash Preview September 2025 Checkpoint is Google's state-of-the-art workhorse model, specifically designed for advanced reasoning, coding, mathematics, and scientific tasks. It includes built-in "thinking" capabilities, enabling it to provide responses with greater accuracy and nuanced context handling. Additionally, Gemini 2.5 Flash is configurable through the "max tokens for reasoning" parameter, as described in the documentation (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning).

    by google1.05M context$0.30/M input tokens$2.50/M output tokens$1.238/K input imgs$1/M audio tokens
  6. Google: Gemini 2.5 Flash Lite Preview 09-2025Gemini 2.5 Flash Lite Preview 09-2025

    Gemini 2.5 Flash-Lite is a lightweight reasoning model in the Gemini 2.5 family, optimized for ultra-low latency and cost efficiency. It offers improved throughput, faster token generation, and better performance across common benchmarks compared to earlier Flash models. By default, "thinking" (i.e. multi-pass reasoning) is disabled to prioritize speed, but developers can enable it via the Reasoning API parameter to selectively trade off cost for intelligence.

    by google1.05M context$0.10/M input tokens$0.40/M output tokens
  7. Qwen: Qwen3 Next 80B A3B ThinkingQwen3 Next 80B A3B Thinking

    Qwen3-Next-80B-A3B-Thinking is a reasoning-first chat model in the Qwen3-Next line that outputs structured “thinking” traces by default. It’s designed for hard multi-step problems; math proofs, code synthesis/debugging, logic, and agentic planning, and reports strong results across knowledge, reasoning, coding, alignment, and multilingual evaluations. Compared with prior Qwen3 variants, it emphasizes stability under long chains of thought and efficient scaling during inference, and it is tuned to follow complex instructions while reducing repetitive or off-task behavior. The model is suitable for agent frameworks and tool use (function calling), retrieval-heavy workflows, and standardized benchmarking where step-by-step solutions are required. It supports long, detailed completions and leverages throughput-oriented techniques (e.g., multi-token prediction) for faster generation. Note that it operates in thinking-only mode.

    by qwen262K context$0.15/M input tokens$1.20/M output tokens
  8. Qwen: Qwen3 Next 80B A3B InstructQwen3 Next 80B A3B Instruct

    Qwen3-Next-80B-A3B-Instruct is an instruction-tuned chat model in the Qwen3-Next series optimized for fast, stable responses without “thinking” traces. It targets complex tasks across reasoning, code generation, knowledge QA, and multilingual use, while remaining robust on alignment and formatting. Compared with prior Qwen3 instruct variants, it focuses on higher throughput and stability on ultra-long inputs and multi-turn dialogues, making it well-suited for RAG, tool use, and agentic workflows that require consistent final answers rather than visible chain-of-thought. The model employs scaling-efficient training and decoding to improve parameter efficiency and inference speed, and has been validated on a broad set of public benchmarks where it reaches or approaches larger Qwen3 systems in several categories while outperforming earlier mid-sized baselines. It is best used as a general assistant, code helper, and long-context task solver in production settings where deterministic, instruction-following outputs are preferred.

    by qwen262K context$0.15/M input tokens$1.20/M output tokens
  9. Google: Gemini 2.5 Flash Image Preview (Nano Banana)Gemini 2.5 Flash Image Preview (Nano Banana)

    Gemini 2.5 Flash Image Preview, a.k.a. "Nano Banana," is a state of the art image generation model with contextual understanding. It is capable of image generation, edits, and multi-turn conversations.

    by google33K context$0.30/M input tokens$2.50/M output tokens$1.238/K input imgs$0.03/K output imgs
  10. DeepSeek: DeepSeek V3.1DeepSeek V3.1

    DeepSeek-V3.1 is a large hybrid reasoning model (671B parameters, 37B active) that supports both thinking and non-thinking modes via prompt templates. It extends the DeepSeek-V3 base with a two-phase long-context training process, reaching up to 128K tokens, and uses FP8 microscaling for efficient inference. Users can control the reasoning behaviour with the reasoning enabled boolean. Learn more in our docs The model improves tool use, code generation, and reasoning efficiency, achieving performance comparable to DeepSeek-R1 on difficult benchmarks while responding more quickly. It supports structured tool calling, code agents, and search agents, making it suitable for research, coding, and agentic workflows. It succeeds the DeepSeek V3-0324 model and performs well on a variety of tasks.

    by deepseek131K context$0.60/M input tokens$1.70/M output tokens
  11. OpenAI: gpt-oss-120bgpt-oss-120b

    gpt-oss-120b is an open-weight, 117B-parameter Mixture-of-Experts (MoE) language model from OpenAI designed for high-reasoning, agentic, and general-purpose production use cases. It activates 5.1B parameters per forward pass and is optimized to run on a single H100 GPU with native MXFP4 quantization. The model supports configurable reasoning depth, full chain-of-thought access, and native tool use, including function calling, browsing, and structured output generation.

    by openai131K context$0.15/M input tokens$0.60/M output tokens
  12. OpenAI: gpt-oss-20bgpt-oss-20b

    gpt-oss-20b is an open-weight 21B parameter model released by OpenAI under the Apache 2.0 license. It uses a Mixture-of-Experts (MoE) architecture with 3.6B active parameters per forward pass, optimized for lower-latency inference and deployability on consumer or single-GPU hardware. The model is trained in OpenAI’s Harmony response format and supports reasoning level configuration, fine-tuning, and agentic capabilities including function calling, tool use, and structured outputs.

    by openai131K context$0.075/M input tokens$0.30/M output tokens
  13. Anthropic: Claude Opus 4.1Claude Opus 4.1

    Claude Opus 4.1 is an updated version of Anthropic’s flagship model, offering improved performance in coding, reasoning, and agentic tasks. It achieves 74.5% on SWE-bench Verified and shows notable gains in multi-file code refactoring, debugging precision, and detail-oriented reasoning. The model supports extended thinking up to 64K tokens and is optimized for tasks involving research, data analysis, and tool-assisted reasoning.

    by anthropic200K context$15/M input tokens$75/M output tokens$24/K input imgs
  14. Qwen: Qwen3 Coder 480B A35BQwen3 Coder 480B A35B

    Qwen3-Coder-480B-A35B-Instruct is a Mixture-of-Experts (MoE) code generation model developed by the Qwen team. It is optimized for agentic coding tasks such as function calling, tool use, and long-context reasoning over repositories. The model features 480 billion total parameters, with 35 billion active per forward pass (8 out of 160 experts). Pricing for the Alibaba endpoints varies by context length. Once a request is greater than 128k input tokens, the higher pricing is used.

    by qwen1.05M context$1/M input tokens$4/M output tokens
  15. Google: Gemini 2.5 Flash LiteGemini 2.5 Flash Lite

    Gemini 2.5 Flash-Lite is a lightweight reasoning model in the Gemini 2.5 family, optimized for ultra-low latency and cost efficiency. It offers improved throughput, faster token generation, and better performance across common benchmarks compared to earlier Flash models. By default, "thinking" (i.e. multi-pass reasoning) is disabled to prioritize speed, but developers can enable it via the Reasoning API parameter to selectively trade off cost for intelligence.

    by google1.05M context$0.10/M input tokens$0.40/M output tokens
  16. Qwen: Qwen3 235B A22B Instruct 2507Qwen3 235B A22B Instruct 2507

    Qwen3-235B-A22B-Instruct-2507 is a multilingual, instruction-tuned mixture-of-experts language model based on the Qwen3-235B architecture, with 22B active parameters per forward pass. It is optimized for general-purpose text generation, including instruction following, logical reasoning, math, code, and tool usage. The model supports a native 262K context length and does not implement "thinking mode" (<think> blocks). Compared to its base variant, this version delivers significant gains in knowledge coverage, long-context reasoning, coding benchmarks, and alignment with open-ended tasks. It is particularly strong on multilingual understanding, math reasoning (e.g., AIME, HMMT), and alignment evaluations like Arena-Hard and WritingBench.

    by qwen262K context$0.25/M input tokens$1/M output tokens
  17. Google: Gemini 2.5 FlashGemini 2.5 Flash

    Gemini 2.5 Flash is Google's state-of-the-art workhorse model, specifically designed for advanced reasoning, coding, mathematics, and scientific tasks. It includes built-in "thinking" capabilities, enabling it to provide responses with greater accuracy and nuanced context handling. Additionally, Gemini 2.5 Flash is configurable through the "max tokens for reasoning" parameter, as described in the documentation (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning).

    by google1.05M context$0.30/M input tokens$2.50/M output tokens$1.238/K input imgs
  18. Google: Gemini 2.5 ProGemini 2.5 Pro

    Gemini 2.5 Pro is Google’s state-of-the-art AI model designed for advanced reasoning, coding, mathematics, and scientific tasks. It employs “thinking” capabilities, enabling it to reason through responses with enhanced accuracy and nuanced context handling. Gemini 2.5 Pro achieves top-tier performance on multiple benchmarks, including first-place positioning on the LMArena leaderboard, reflecting superior human-preference alignment and complex problem-solving abilities.

    by google1.05M context$1.25/M input tokens$10/M output tokens$5.16/K input imgs
  19. Google: Gemini 2.5 Pro Preview 06-05Gemini 2.5 Pro Preview 06-05

    Gemini 2.5 Pro is Google’s state-of-the-art AI model designed for advanced reasoning, coding, mathematics, and scientific tasks. It employs “thinking” capabilities, enabling it to reason through responses with enhanced accuracy and nuanced context handling. Gemini 2.5 Pro achieves top-tier performance on multiple benchmarks, including first-place positioning on the LMArena leaderboard, reflecting superior human-preference alignment and complex problem-solving abilities.

    by google1.05M context$1.25/M input tokens$10/M output tokens$5.16/K input imgs
  20. DeepSeek: R1 0528R1 0528

    May 28th update to the original DeepSeek R1 Performance on par with OpenAI o1, but open-sourced and with fully open reasoning tokens. It's 671B parameters in size, with 37B active in an inference pass. Fully open-source model.

    by deepseek164K context$1.35/M input tokens$5.40/M output tokens
  21. Anthropic: Claude Opus 4Claude Opus 4

    Claude Opus 4 is benchmarked as the world’s best coding model, at time of release, bringing sustained performance on complex, long-running tasks and agent workflows. It sets new benchmarks in software engineering, achieving leading results on SWE-bench (72.5%) and Terminal-bench (43.2%). Opus 4 supports extended, agentic workflows, handling thousands of task steps continuously for hours without degradation. Read more at the blog post here

    by anthropic200K context$15/M input tokens$75/M output tokens$24/K input imgs
  22. Anthropic: Claude Sonnet 4Claude Sonnet 4

    Claude Sonnet 4 significantly enhances the capabilities of its predecessor, Sonnet 3.7, excelling in both coding and reasoning tasks with improved precision and controllability. Achieving state-of-the-art performance on SWE-bench (72.7%), Sonnet 4 balances capability and computational efficiency, making it suitable for a broad range of applications from routine coding tasks to complex software development projects. Key enhancements include improved autonomous codebase navigation, reduced error rates in agent-driven workflows, and increased reliability in following intricate instructions. Sonnet 4 is optimized for practical everyday use, providing advanced reasoning capabilities while maintaining efficiency and responsiveness in diverse internal and external scenarios. Read more at the blog post here

    by anthropic1M context$3/M input tokens$15/M output tokens$4.80/K input imgs
  23. Google: Gemini 2.5 Pro Preview 05-06Gemini 2.5 Pro Preview 05-06

    Gemini 2.5 Pro is Google’s state-of-the-art AI model designed for advanced reasoning, coding, mathematics, and scientific tasks. It employs “thinking” capabilities, enabling it to reason through responses with enhanced accuracy and nuanced context handling. Gemini 2.5 Pro achieves top-tier performance on multiple benchmarks, including first-place positioning on the LMArena leaderboard, reflecting superior human-preference alignment and complex problem-solving abilities.

    by google1.05M context$1.25/M input tokens$10/M output tokens$5.16/K input imgs
  24. Meta: Llama 4 MaverickLlama 4 Maverick

    Llama 4 Maverick 17B Instruct (128E) is a high-capacity multimodal language model from Meta, built on a mixture-of-experts (MoE) architecture with 128 experts and 17 billion active parameters per forward pass (400B total). It supports multilingual text and image input, and produces multilingual text and code output across 12 supported languages. Optimized for vision-language tasks, Maverick is instruction-tuned for assistant-like behavior, image reasoning, and general-purpose multimodal interaction. Maverick features early fusion for native multimodality and a 1 million token context window. It was trained on a curated mixture of public, licensed, and Meta-platform data, covering ~22 trillion tokens, with a knowledge cutoff in August 2024. Released on April 5, 2025 under the Llama 4 Community License, Maverick is suited for research and commercial applications requiring advanced multimodal understanding and high model throughput.

    by meta-llama1.05M context$0.35/M input tokens$1.15/M output tokens
  25. Meta: Llama 4 ScoutLlama 4 Scout

    Llama 4 Scout 17B Instruct (16E) is a mixture-of-experts (MoE) language model developed by Meta, activating 17 billion parameters out of a total of 109B. It supports native multimodal input (text and image) and multilingual output (text and code) across 12 supported languages. Designed for assistant-style interaction and visual reasoning, Scout uses 16 experts per forward pass and features a context length of 10 million tokens, with a training corpus of ~40 trillion tokens. Built for high efficiency and local or commercial deployment, Llama 4 Scout incorporates early fusion for seamless modality integration. It is instruction-tuned for use in multilingual chat, captioning, and image understanding tasks. Released under the Llama 4 Community License, it was last trained on data up to August 2024 and launched publicly on April 5, 2025.

    by meta-llama10M context$0.25/M input tokens$0.70/M output tokens
  26. Google: Gemini 2.0 Flash LiteGemini 2.0 Flash Lite

    Gemini 2.0 Flash Lite offers a significantly faster time to first token (TTFT) compared to Gemini Flash 1.5, while maintaining quality on par with larger models like Gemini Pro 1.5, all at extremely economical token prices.

    by google1.05M context$0.075/M input tokens$0.30/M output tokens
  27. Anthropic: Claude 3.7 SonnetClaude 3.7 Sonnet

    Claude 3.7 Sonnet is an advanced large language model with improved reasoning, coding, and problem-solving capabilities. It introduces a hybrid reasoning approach, allowing users to choose between rapid responses and extended, step-by-step processing for complex tasks. The model demonstrates notable improvements in coding, particularly in front-end development and full-stack updates, and excels in agentic workflows, where it can autonomously navigate multi-step processes. Claude 3.7 Sonnet maintains performance parity with its predecessor in standard mode while offering an extended reasoning mode for enhanced accuracy in math, coding, and instruction-following tasks. Read more at the blog post here

    by anthropic200K context$3/M input tokens$15/M output tokens$4.80/K input imgs
  28. Google: Gemini 2.0 FlashGemini 2.0 Flash

    Gemini Flash 2.0 offers a significantly faster time to first token (TTFT) compared to Gemini Flash 1.5, while maintaining quality on par with larger models like Gemini Pro 1.5. It introduces notable enhancements in multimodal understanding, coding capabilities, complex instruction following, and function calling. These advancements come together to deliver more seamless and robust agentic experiences.

    by google1M context$0.15/M input tokens$0.60/M output tokens$0.0387/K input imgs
  29. Google: Gemini 2.0 Flash ExperimentalGemini 2.0 Flash ExperimentalFree variant

    Gemini Flash 2.0 offers a significantly faster time to first token (TTFT) compared to Gemini Flash 1.5, while maintaining quality on par with larger models like Gemini Pro 1.5. It introduces notable enhancements in multimodal understanding, coding capabilities, complex instruction following, and function calling. These advancements come together to deliver more seamless and robust agentic experiences.

    by google1.05M context$0/M input tokens$0/M output tokens
  30. Meta: Llama 3.3 70B InstructLlama 3.3 70B Instruct

    The Meta Llama 3.3 multilingual large language model (LLM) is a pretrained and instruction tuned generative model in 70B (text in/text out). The Llama 3.3 instruction tuned text only model is optimized for multilingual dialogue use cases and outperforms many of the available open source and closed chat models on common industry benchmarks. Supported languages: English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai. Model Card

    by meta-llama131K context$0.72/M input tokens$0.72/M output tokens
  31. Anthropic: Claude 3.5 Haiku (2024-10-22)Claude 3.5 Haiku (2024-10-22)

    Claude 3.5 Haiku features enhancements across all skill sets including coding, tool use, and reasoning. As the fastest model in the Anthropic lineup, it offers rapid response times suitable for applications that require high interactivity and low latency, such as user-facing chatbots and on-the-fly code completions. It also excels in specialized tasks like data extraction and real-time content moderation, making it a versatile tool for a broad range of industries. It does not support image inputs. See the launch announcement and benchmark results here

    by anthropic200K context$0.80/M input tokens$4/M output tokens
  32. Anthropic: Claude 3.5 HaikuClaude 3.5 Haiku

    Claude 3.5 Haiku features offers enhanced capabilities in speed, coding accuracy, and tool use. Engineered to excel in real-time applications, it delivers quick response times that are essential for dynamic tasks such as chat interactions and immediate coding suggestions. This makes it highly suitable for environments that demand both speed and precision, such as software development, customer service bots, and data management systems. This model is currently pointing to Claude 3.5 Haiku (2024-10-22).

    by anthropic200K context$0.80/M input tokens$4/M output tokens
  33. Anthropic: Claude 3.5 SonnetClaude 3.5 Sonnet

    New Claude 3.5 Sonnet delivers better-than-Opus capabilities, faster-than-Sonnet speeds, at the same Sonnet prices. Sonnet is particularly good at: - Coding: Scores ~49% on SWE-Bench Verified, higher than the last best score, and without any fancy prompt scaffolding - Data science: Augments human data science expertise; navigates unstructured data while using multiple tools for insights - Visual processing: excelling at interpreting charts, graphs, and images, accurately transcribing text to derive insights beyond just the text alone - Agentic tasks: exceptional tool use, making it great at agentic tasks (i.e. complex, multi-step problem solving tasks that require engaging with other systems) #multimodal

    by anthropic200K context$3/M input tokens$15/M output tokens$4.80/K input imgs
  34. Meta: Llama 3.1 405B InstructLlama 3.1 405B Instruct

    The highly anticipated 400B class of Llama3 is here! Clocking in at 128k context with impressive eval scores, the Meta AI team continues to push the frontier of open-source LLMs. Meta's latest class of model (Llama 3.1) launched with a variety of sizes & flavors. This 405B instruct-tuned version is optimized for high quality dialogue usecases. It has demonstrated strong performance compared to leading closed-source models including GPT-4o and Claude 3.5 Sonnet in evaluations. To read more about the model release, click here. Usage of this model is subject to Meta's Acceptable Use Policy.

    by meta-llama131K context$5/M input tokens$16/M output tokens
  35. Anthropic: Claude 3.5 Sonnet (2024-06-20)Claude 3.5 Sonnet (2024-06-20)

    Claude 3.5 Sonnet delivers better-than-Opus capabilities, faster-than-Sonnet speeds, at the same Sonnet prices. Sonnet is particularly good at: - Coding: Autonomously writes, edits, and runs code with reasoning and troubleshooting - Data science: Augments human data science expertise; navigates unstructured data while using multiple tools for insights - Visual processing: excelling at interpreting charts, graphs, and images, accurately transcribing text to derive insights beyond just the text alone - Agentic tasks: exceptional tool use, making it great at agentic tasks (i.e. complex, multi-step problem solving tasks that require engaging with other systems) For the latest version (2024-10-23), check out Claude 3.5 Sonnet. #multimodal

    by anthropic200K context$3/M input tokens$15/M output tokens$4.80/K input imgs
  36. Anthropic: Claude 3 HaikuClaude 3 Haiku

    Claude 3 Haiku is Anthropic's fastest and most compact model for near-instant responsiveness. Quick and accurate targeted performance. See the launch announcement and benchmark results here #multimodal

    by anthropic200K context$0.25/M input tokens$1.25/M output tokens$0.40/K input imgs
  37. Anthropic: Claude 3 OpusClaude 3 Opus

    Claude 3 Opus is Anthropic's most powerful model for highly complex tasks. It boasts top-level performance, intelligence, fluency, and understanding. See the launch announcement and benchmark results here #multimodal

    by anthropic200K context$15/M input tokens$75/M output tokens$24/K input imgs