Skip to content
  • Status
  • Announcements
  • Docs
  • Support
  • About
  • Partners
  • Enterprise
  • Careers
  • Pricing
  • Privacy
  • Terms
  •  
  • © 2025 OpenRouter, Inc

    BAAI: bge-m3

    baai/bge-m3

    Created Nov 18, 20258,192 context
    $0.01/M input tokens$0/M output tokens

    The bge-m3 embedding model encodes sentences, paragraphs, and long documents into a 1024-dimensional dense vector space, delivering high-quality semantic embeddings optimized for multilingual retrieval, semantic search, and large-context applications.

    Recent activity on bge-m3

    Total usage per day on OpenRouter

    Prompt
    39.3M
    Completion
    0

    Prompt tokens measure input size. Reasoning tokens show internal thinking before a response. Completion tokens reflect total output length.