Skip to content
  1.  
  2. © 2023 – 2025 OpenRouter, Inc
    Favicon for Novita

    NovitaAI

    Browse models provided by NovitaAI (Terms of Service)

    60 models

    Tokens processed on OpenRouter

    • Qwen: Qwen3 VL 8B InstructQwen3 VL 8B Instruct

      Qwen3-VL-8B-Instruct is a multimodal vision-language model from the Qwen3-VL series, built for high-fidelity understanding and reasoning across text, images, and video. It features improved multimodal fusion with Interleaved-MRoPE for long-horizon temporal reasoning, DeepStack for fine-grained visual-text alignment, and text-timestamp alignment for precise event localization. The model supports a native 256K-token context window, extensible to 1M tokens, and handles both static and dynamic media inputs for tasks like document parsing, visual question answering, spatial reasoning, and GUI control. It achieves text understanding comparable to leading LLMs while expanding OCR coverage to 32 languages and enhancing robustness under varied visual conditions.

      by qwen
    256K context
    $0.08/M input tokens$0.50/M output tokens
  3. Baidu: ERNIE 4.5 21B A3B ThinkingERNIE 4.5 21B A3B Thinking

    ERNIE-4.5-21B-A3B-Thinking is Baidu's upgraded lightweight MoE model, refined to boost reasoning depth and quality for top-tier performance in logical puzzles, math, science, coding, text generation, and expert-level academic benchmarks.

    by baidu131K context$0.07/M input tokens$0.28/M output tokens
  4. Qwen: Qwen3 VL 30B A3B ThinkingQwen3 VL 30B A3B Thinking

    Qwen3-VL-30B-A3B-Thinking is a multimodal model that unifies strong text generation with visual understanding for images and videos. Its Thinking variant enhances reasoning in STEM, math, and complex tasks. It excels in perception of real-world/synthetic categories, 2D/3D spatial grounding, and long-form visual comprehension, achieving competitive multimodal benchmark results. For agentic use, it handles multi-image multi-turn instructions, video timeline alignments, GUI automation, and visual coding from sketches to debugged UI. Text performance matches flagship Qwen3 models, suiting document AI, OCR, UI assistance, spatial tasks, and agent research.

    by qwen0 context$0.20/M input tokens$1/M output tokens
  5. Qwen: Qwen3 VL 30B A3B InstructQwen3 VL 30B A3B Instruct

    Qwen3-VL-30B-A3B-Instruct is a multimodal model that unifies strong text generation with visual understanding for images and videos. Its Instruct variant optimizes instruction-following for general multimodal tasks. It excels in perception of real-world/synthetic categories, 2D/3D spatial grounding, and long-form visual comprehension, achieving competitive multimodal benchmark results. For agentic use, it handles multi-image multi-turn instructions, video timeline alignments, GUI automation, and visual coding from sketches to debugged UI. Text performance matches flagship Qwen3 models, suiting document AI, OCR, UI assistance, spatial tasks, and agent research.

    by qwen0 context$0.20/M input tokens$0.70/M output tokens
  6. Z.AI: GLM 4.6GLM 4.6

    Compared with GLM-4.5, this generation brings several key improvements: Longer context window: The context window has been expanded from 128K to 200K tokens, enabling the model to handle more complex agentic tasks. Superior coding performance: The model achieves higher scores on code benchmarks and demonstrates better real-world performance in applications such as Claude Code、Cline、Roo Code and Kilo Code, including improvements in generating visually polished front-end pages. Advanced reasoning: GLM-4.6 shows a clear improvement in reasoning performance and supports tool use during inference, leading to stronger overall capability. More capable agents: GLM-4.6 exhibits stronger performance in tool using and search-based agents, and integrates more effectively within agent frameworks. Refined writing: Better aligns with human preferences in style and readability, and performs more naturally in role-playing scenarios.

    by z-ai200K context$0.60/M input tokens$2.20/M output tokens
  7. DeepSeek: DeepSeek V3.2 ExpDeepSeek V3.2 Exp

    DeepSeek-V3.2-Exp is an experimental large language model released by DeepSeek as an intermediate step between V3.1 and future architectures. It introduces DeepSeek Sparse Attention (DSA), a fine-grained sparse attention mechanism designed to improve training and inference efficiency in long-context scenarios while maintaining output quality. Users can control the reasoning behaviour with the reasoning enabled boolean. Learn more in our docs The model was trained under conditions aligned with V3.1-Terminus to enable direct comparison. Benchmarking shows performance roughly on par with V3.1 across reasoning, coding, and agentic tool-use tasks, with minor tradeoffs and gains depending on the domain. This release focuses on validating architectural optimizations for extended context lengths rather than advancing raw task accuracy, making it primarily a research-oriented model for exploring efficient transformer designs.

    by deepseek131K context$0.27/M input tokens$0.41/M output tokens
  8. Qwen: Qwen3 VL 235B A22B ThinkingQwen3 VL 235B A22B Thinking

    Qwen3-VL-235B-A22B Thinking is a multimodal model that unifies strong text generation with visual understanding across images and video. The Thinking model is optimized for multimodal reasoning in STEM and math. The series emphasizes robust perception (recognition of diverse real-world and synthetic categories), spatial understanding (2D/3D grounding), and long-form visual comprehension, with competitive results on public multimodal benchmarks for both perception and reasoning. Beyond analysis, Qwen3-VL supports agentic interaction and tool use: it can follow complex instructions over multi-image, multi-turn dialogues; align text to video timelines for precise temporal queries; and operate GUI elements for automation tasks. The models also enable visual coding workflows, turning sketches or mockups into code and assisting with UI debugging, while maintaining strong text-only performance comparable to the flagship Qwen3 language models. This makes Qwen3-VL suitable for production scenarios spanning document AI, multilingual OCR, software/UI assistance, spatial/embodied tasks, and research on vision-language agents.

    by qwen131K context$0.98/M input tokens$3.95/M output tokens
  9. Qwen: Qwen3 VL 235B A22B InstructQwen3 VL 235B A22B Instruct

    Qwen3-VL-235B-A22B Instruct is an open-weight multimodal model that unifies strong text generation with visual understanding across images and video. The Instruct model targets general vision-language use (VQA, document parsing, chart/table extraction, multilingual OCR). The series emphasizes robust perception (recognition of diverse real-world and synthetic categories), spatial understanding (2D/3D grounding), and long-form visual comprehension, with competitive results on public multimodal benchmarks for both perception and reasoning. Beyond analysis, Qwen3-VL supports agentic interaction and tool use: it can follow complex instructions over multi-image, multi-turn dialogues; align text to video timelines for precise temporal queries; and operate GUI elements for automation tasks. The models also enable visual coding workflows—turning sketches or mockups into code and assisting with UI debugging—while maintaining strong text-only performance comparable to the flagship Qwen3 language models. This makes Qwen3-VL suitable for production scenarios spanning document AI, multilingual OCR, software/UI assistance, spatial/embodied tasks, and research on vision-language agents.

    by qwen131K context$0.30/M input tokens$1.50/M output tokens
  10. DeepSeek: DeepSeek V3.1 TerminusDeepSeek V3.1 Terminus

    DeepSeek-V3.1 Terminus is an update to DeepSeek V3.1 that maintains the model's original capabilities while addressing issues reported by users, including language consistency and agent capabilities, further optimizing the model's performance in coding and search agents. It is a large hybrid reasoning model (671B parameters, 37B active) that supports both thinking and non-thinking modes. It extends the DeepSeek-V3 base with a two-phase long-context training process, reaching up to 128K tokens, and uses FP8 microscaling for efficient inference. Users can control the reasoning behaviour with the reasoning enabled boolean. Learn more in our docs The model improves tool use, code generation, and reasoning efficiency, achieving performance comparable to DeepSeek-R1 on difficult benchmarks while responding more quickly. It supports structured tool calling, code agents, and search agents, making it suitable for research, coding, and agentic workflows.

    by deepseek131K context$0.27/M input tokens$1/M output tokens
  11. Qwen: Qwen3 Next 80B A3B ThinkingQwen3 Next 80B A3B Thinking

    Qwen3-Next-80B-A3B-Thinking is a reasoning-first chat model in the Qwen3-Next line that outputs structured “thinking” traces by default. It’s designed for hard multi-step problems; math proofs, code synthesis/debugging, logic, and agentic planning, and reports strong results across knowledge, reasoning, coding, alignment, and multilingual evaluations. Compared with prior Qwen3 variants, it emphasizes stability under long chains of thought and efficient scaling during inference, and it is tuned to follow complex instructions while reducing repetitive or off-task behavior. The model is suitable for agent frameworks and tool use (function calling), retrieval-heavy workflows, and standardized benchmarking where step-by-step solutions are required. It supports long, detailed completions and leverages throughput-oriented techniques (e.g., multi-token prediction) for faster generation. Note that it operates in thinking-only mode.

    by qwen262K context$0.15/M input tokens$1.50/M output tokens
  12. Qwen: Qwen3 Next 80B A3B InstructQwen3 Next 80B A3B Instruct

    Qwen3-Next-80B-A3B-Instruct is an instruction-tuned chat model in the Qwen3-Next series optimized for fast, stable responses without “thinking” traces. It targets complex tasks across reasoning, code generation, knowledge QA, and multilingual use, while remaining robust on alignment and formatting. Compared with prior Qwen3 instruct variants, it focuses on higher throughput and stability on ultra-long inputs and multi-turn dialogues, making it well-suited for RAG, tool use, and agentic workflows that require consistent final answers rather than visible chain-of-thought. The model employs scaling-efficient training and decoding to improve parameter efficiency and inference speed, and has been validated on a broad set of public benchmarks where it reaches or approaches larger Qwen3 systems in several categories while outperforming earlier mid-sized baselines. It is best used as a general assistant, code helper, and long-context task solver in production settings where deterministic, instruction-following outputs are preferred.

    by qwen262K context$0.15/M input tokens$1.50/M output tokens
  13. MoonshotAI: Kimi K2 0905Kimi K2 0905

    Kimi K2 0905 is the September update of Kimi K2 0711. It is a large-scale Mixture-of-Experts (MoE) language model developed by Moonshot AI, featuring 1 trillion total parameters with 32 billion active per forward pass. It supports long-context inference up to 256k tokens, extended from the previous 128k. This update improves agentic coding with higher accuracy and better generalization across scaffolds, and enhances frontend coding with more aesthetic and functional outputs for web, 3D, and related tasks. Kimi K2 is optimized for agentic capabilities, including advanced tool use, reasoning, and code synthesis. It excels across coding (LiveCodeBench, SWE-bench), reasoning (ZebraLogic, GPQA), and tool-use (Tau2, AceBench) benchmarks. The model is trained with a novel stack incorporating the MuonClip optimizer for stable large-scale MoE training.

    by moonshotai262K context$0.60/M input tokens$2.50/M output tokens
  14. DeepSeek: DeepSeek V3.1DeepSeek V3.1

    DeepSeek-V3.1 is a large hybrid reasoning model (671B parameters, 37B active) that supports both thinking and non-thinking modes via prompt templates. It extends the DeepSeek-V3 base with a two-phase long-context training process, reaching up to 128K tokens, and uses FP8 microscaling for efficient inference. Users can control the reasoning behaviour with the reasoning enabled boolean. Learn more in our docs The model improves tool use, code generation, and reasoning efficiency, achieving performance comparable to DeepSeek-R1 on difficult benchmarks while responding more quickly. It supports structured tool calling, code agents, and search agents, making it suitable for research, coding, and agentic workflows. It succeeds the DeepSeek V3-0324 model and performs well on a variety of tasks.

    by deepseek131K context$0.27/M input tokens$1/M output tokens
  15. Baidu: ERNIE 4.5 21B A3BERNIE 4.5 21B A3B

    A sophisticated text-based Mixture-of-Experts (MoE) model featuring 21B total parameters with 3B activated per token, delivering exceptional multimodal understanding and generation through heterogeneous MoE structures and modality-isolated routing. Supporting an extensive 131K token context length, the model achieves efficient inference via multi-expert parallel collaboration and quantization, while advanced post-training techniques including SFT, DPO, and UPO ensure optimized performance across diverse applications with specialized routing and balancing losses for superior task handling.

    by baidu131K context$0.07/M input tokens$0.28/M output tokens
  16. Baidu: ERNIE 4.5 VL 28B A3BERNIE 4.5 VL 28B A3B

    A powerful multimodal Mixture-of-Experts chat model featuring 28B total parameters with 3B activated per token, delivering exceptional text and vision understanding through its innovative heterogeneous MoE structure with modality-isolated routing. Built with scaling-efficient infrastructure for high-throughput training and inference, the model leverages advanced post-training techniques including SFT, DPO, and UPO for optimized performance, while supporting an impressive 131K context length and RLVR alignment for superior cross-modal reasoning and generation capabilities.

    by baidu131K context$0.14/M input tokens$0.56/M output tokens
  17. Z.AI: GLM 4.5VGLM 4.5V

    GLM-4.5V is a vision-language foundation model for multimodal agent applications. Built on a Mixture-of-Experts (MoE) architecture with 106B parameters and 12B activated parameters, it achieves state-of-the-art results in video understanding, image Q&A, OCR, and document parsing, with strong gains in front-end web coding, grounding, and spatial reasoning. It offers a hybrid inference mode: a "thinking mode" for deep reasoning and a "non-thinking mode" for fast responses. Reasoning behavior can be toggled via the reasoning enabled boolean. Learn more in our docs

    by z-ai66K context$0.60/M input tokens$1.80/M output tokens
  18. OpenAI: gpt-oss-120bgpt-oss-120b

    gpt-oss-120b is an open-weight, 117B-parameter Mixture-of-Experts (MoE) language model from OpenAI designed for high-reasoning, agentic, and general-purpose production use cases. It activates 5.1B parameters per forward pass and is optimized to run on a single H100 GPU with native MXFP4 quantization. The model supports configurable reasoning depth, full chain-of-thought access, and native tool use, including function calling, browsing, and structured output generation.

    by openai131K context$0.05/M input tokens$0.25/M output tokens
  19. OpenAI: gpt-oss-20bgpt-oss-20b

    gpt-oss-20b is an open-weight 21B parameter model released by OpenAI under the Apache 2.0 license. It uses a Mixture-of-Experts (MoE) architecture with 3.6B active parameters per forward pass, optimized for lower-latency inference and deployability on consumer or single-GPU hardware. The model is trained in OpenAI’s Harmony response format and supports reasoning level configuration, fine-tuning, and agentic capabilities including function calling, tool use, and structured outputs.

    by openai131K context$0.04/M input tokens$0.15/M output tokens
  20. Qwen: Qwen3 Coder 30B A3B InstructQwen3 Coder 30B A3B Instruct

    Qwen3-Coder-30B-A3B-Instruct is a 30.5B parameter Mixture-of-Experts (MoE) model with 128 experts (8 active per forward pass), designed for advanced code generation, repository-scale understanding, and agentic tool use. Built on the Qwen3 architecture, it supports a native context length of 256K tokens (extendable to 1M with Yarn) and performs strongly in tasks involving function calls, browser use, and structured code completion. This model is optimized for instruction-following without “thinking mode”, and integrates well with OpenAI-compatible tool-use formats.

    by qwen0 context$0.07/M input tokens$0.27/M output tokens
  21. Z.AI: GLM 4.5GLM 4.5

    GLM-4.5 is our latest flagship foundation model, purpose-built for agent-based applications. It leverages a Mixture-of-Experts (MoE) architecture and supports a context length of up to 128k tokens. GLM-4.5 delivers significantly enhanced capabilities in reasoning, code generation, and agent alignment. It supports a hybrid inference mode with two options, a "thinking mode" designed for complex reasoning and tool use, and a "non-thinking mode" optimized for instant responses. Users can control the reasoning behaviour with the reasoning enabled boolean. Learn more in our docs

    by z-ai131K context$0.60/M input tokens$2.20/M output tokens
  22. Z.AI: GLM 4.5 AirGLM 4.5 Air

    GLM-4.5-Air is the lightweight variant of our latest flagship model family, also purpose-built for agent-centric applications. Like GLM-4.5, it adopts the Mixture-of-Experts (MoE) architecture but with a more compact parameter size. GLM-4.5-Air also supports hybrid inference modes, offering a "thinking mode" for advanced reasoning and tool use, and a "non-thinking mode" for real-time interaction. Users can control the reasoning behaviour with the reasoning enabled boolean. Learn more in our docs

    by z-ai131K context$0.13/M input tokens$0.85/M output tokens
  23. Qwen: Qwen3 235B A22B Thinking 2507Qwen3 235B A22B Thinking 2507

    Qwen3-235B-A22B-Thinking-2507 is a high-performance, open-weight Mixture-of-Experts (MoE) language model optimized for complex reasoning tasks. It activates 22B of its 235B parameters per forward pass and natively supports up to 262,144 tokens of context. This "thinking-only" variant enhances structured logical reasoning, mathematics, science, and long-form generation, showing strong benchmark performance across AIME, SuperGPQA, LiveCodeBench, and MMLU-Redux. It enforces a special reasoning mode (</think>) and is designed for high-token outputs (up to 81,920 tokens) in challenging domains. The model is instruction-tuned and excels at step-by-step reasoning, tool use, agentic workflows, and multilingual tasks. This release represents the most capable open-source variant in the Qwen3-235B series, surpassing many closed models in structured reasoning use cases.

    by qwen262K context$0.30/M input tokens$3/M output tokens
  24. Qwen: Qwen3 Coder 480B A35BQwen3 Coder 480B A35B

    Qwen3-Coder-480B-A35B-Instruct is a Mixture-of-Experts (MoE) code generation model developed by the Qwen team. It is optimized for agentic coding tasks such as function calling, tool use, and long-context reasoning over repositories. The model features 480 billion total parameters, with 35 billion active per forward pass (8 out of 160 experts). Pricing for the Alibaba endpoints varies by context length. Once a request is greater than 128k input tokens, the higher pricing is used.

    by qwen1.05M context$0.29/M input tokens$1.20/M output tokens
  25. Qwen: Qwen3 235B A22B Instruct 2507Qwen3 235B A22B Instruct 2507

    Qwen3-235B-A22B-Instruct-2507 is a multilingual, instruction-tuned mixture-of-experts language model based on the Qwen3-235B architecture, with 22B active parameters per forward pass. It is optimized for general-purpose text generation, including instruction following, logical reasoning, math, code, and tool usage. The model supports a native 262K context length and does not implement "thinking mode" (<think> blocks). Compared to its base variant, this version delivers significant gains in knowledge coverage, long-context reasoning, coding benchmarks, and alignment with open-ended tasks. It is particularly strong on multilingual understanding, math reasoning (e.g., AIME, HMMT), and alignment evaluations like Arena-Hard and WritingBench.

    by qwen262K context$0.09/M input tokens$0.58/M output tokens
  26. MoonshotAI: Kimi K2 0711Kimi K2 0711

    Kimi K2 Instruct is a large-scale Mixture-of-Experts (MoE) language model developed by Moonshot AI, featuring 1 trillion total parameters with 32 billion active per forward pass. It is optimized for agentic capabilities, including advanced tool use, reasoning, and code synthesis. Kimi K2 excels across a broad range of benchmarks, particularly in coding (LiveCodeBench, SWE-bench), reasoning (ZebraLogic, GPQA), and tool-use (Tau2, AceBench) tasks. It supports long-context inference up to 128K tokens and is designed with a novel training stack that includes the MuonClip optimizer for stable large-scale MoE training.

    by moonshotai131K context$0.57/M input tokens$2.30/M output tokens
  27. THUDM: GLM 4.1V 9B ThinkingGLM 4.1V 9B Thinking

    GLM-4.1V-9B-Thinking is a 9B parameter vision-language model developed by THUDM, based on the GLM-4-9B foundation. It introduces a reasoning-centric "thinking paradigm" enhanced with reinforcement learning to improve multimodal reasoning, long-context understanding (up to 64K tokens), and complex problem solving. It achieves state-of-the-art performance among models in its class, outperforming even larger models like Qwen-2.5-VL-72B on a majority of benchmark tasks.

    by thudm66K context$0.035/M input tokens$0.138/M output tokens
  28. Baidu: ERNIE 4.5 VL 424B A47B ERNIE 4.5 VL 424B A47B

    ERNIE-4.5-VL-424B-A47B is a multimodal Mixture-of-Experts (MoE) model from Baidu’s ERNIE 4.5 series, featuring 424B total parameters with 47B active per token. It is trained jointly on text and image data using a heterogeneous MoE architecture and modality-isolated routing to enable high-fidelity cross-modal reasoning, image understanding, and long-context generation (up to 131k tokens). Fine-tuned with techniques like SFT, DPO, UPO, and RLVR, this model supports both “thinking” and non-thinking inference modes. Designed for vision-language tasks in English and Chinese, it is optimized for efficient scaling and can operate under 4-bit/8-bit quantization.

    by baidu131K context$0.42/M input tokens$1.25/M output tokens
  29. Baidu: ERNIE 4.5 300B A47B ERNIE 4.5 300B A47B

    ERNIE-4.5-300B-A47B is a 300B parameter Mixture-of-Experts (MoE) language model developed by Baidu as part of the ERNIE 4.5 series. It activates 47B parameters per token and supports text generation in both English and Chinese. Optimized for high-throughput inference and efficient scaling, it uses a heterogeneous MoE structure with advanced routing and quantization strategies, including FP8 and 2-bit formats. This version is fine-tuned for language-only tasks and supports reasoning, tool parameters, and extended context lengths up to 131k tokens. Suitable for general-purpose LLM applications with high reasoning and throughput demands.

    by baidu131K context$0.28/M input tokens$1.10/M output tokens
  30. MiniMax: MiniMax M1MiniMax M1

    MiniMax-M1 is a large-scale, open-weight reasoning model designed for extended context and high-efficiency inference. It leverages a hybrid Mixture-of-Experts (MoE) architecture paired with a custom "lightning attention" mechanism, allowing it to process long sequences—up to 1 million tokens—while maintaining competitive FLOP efficiency. With 456 billion total parameters and 45.9B active per token, this variant is optimized for complex, multi-step reasoning tasks. Trained via a custom reinforcement learning pipeline (CISPO), M1 excels in long-context understanding, software engineering, agentic tool use, and mathematical reasoning. Benchmarks show strong performance across FullStackBench, SWE-bench, MATH, GPQA, and TAU-Bench, often outperforming other open models like DeepSeek R1 and Qwen3-235B.

    by minimax1M context$0.55/M input tokens$2.20/M output tokens
  31. MiniMax: MiniMax-M1-80kMiniMax-M1-80k

    MiniMax-M1-80k is a large-scale, open-weight reasoning model designed for extended context and high-efficiency inference. MiniMax-M1-80k has a 80k token thinking budget. It leverages a hybrid Mixture-of-Experts (MoE) architecture paired with a custom "lightning attention" mechanism, allowing it to process long sequences—up to 1 million tokens—while maintaining competitive FLOP efficiency. With 456 billion total parameters and 45.9B active per token, this variant is optimized for complex, multi-step reasoning tasks. Trained via a custom reinforcement learning pipeline (CISPO), M1 excels in long-context understanding, software engineering, agentic tool use, and mathematical reasoning. Benchmarks show strong performance across FullStackBench, SWE-bench, MATH, GPQA, and TAU-Bench, often outperforming other open models like DeepSeek R1 and Qwen3-235B.

    by minimax1M context$0.55/M input tokens$2.20/M output tokens
  32. DeepSeek: DeepSeek R1 0528 Qwen3 8BDeepSeek R1 0528 Qwen3 8B

    DeepSeek-R1-0528 is a lightly upgraded release of DeepSeek R1 that taps more compute and smarter post-training tricks, pushing its reasoning and inference to the brink of flagship models like O3 and Gemini 2.5 Pro. It now tops math, programming, and logic leaderboards, showcasing a step-change in depth-of-thought. The distilled variant, DeepSeek-R1-0528-Qwen3-8B, transfers this chain-of-thought into an 8 B-parameter form, beating standard Qwen3 8B by +10 pp and tying the 235 B “thinking” giant on AIME 2024.

    by deepseek131K context$0.06/M input tokens$0.09/M output tokens
  33. DeepSeek: R1 0528R1 0528

    May 28th update to the original DeepSeek R1 Performance on par with OpenAI o1, but open-sourced and with fully open reasoning tokens. It's 671B parameters in size, with 37B active in an inference pass. Fully open-source model.

    by deepseek164K context$0.70/M input tokens$2.50/M output tokens
  34. Qwen: Qwen3 30B A3BQwen3 30B A3B

    Qwen3, the latest generation in the Qwen large language model series, features both dense and mixture-of-experts (MoE) architectures to excel in reasoning, multilingual support, and advanced agent tasks. Its unique ability to switch seamlessly between a thinking mode for complex reasoning and a non-thinking mode for efficient dialogue ensures versatile, high-quality performance. Significantly outperforming prior models like QwQ and Qwen2.5, Qwen3 delivers superior mathematics, coding, commonsense reasoning, creative writing, and interactive dialogue capabilities. The Qwen3-30B-A3B variant includes 30.5 billion parameters (3.3 billion activated), 48 layers, 128 experts (8 activated per task), and supports up to 131K token contexts with YaRN, setting a new standard among open-source models.

    by qwen131K context$0.09/M input tokens$0.45/M output tokens
  35. Qwen: Qwen3 8BQwen3 8B

    Qwen3-8B is a dense 8.2B parameter causal language model from the Qwen3 series, designed for both reasoning-heavy tasks and efficient dialogue. It supports seamless switching between "thinking" mode for math, coding, and logical inference, and "non-thinking" mode for general conversation. The model is fine-tuned for instruction-following, agent integration, creative writing, and multilingual use across 100+ languages and dialects. It natively supports a 32K token context window and can extend to 131K tokens with YaRN scaling.

    by qwen131K context$0.035/M input tokens$0.138/M output tokens
  36. Qwen: Qwen3 32BQwen3 32B

    Qwen3-32B is a dense 32.8B parameter causal language model from the Qwen3 series, optimized for both complex reasoning and efficient dialogue. It supports seamless switching between a "thinking" mode for tasks like math, coding, and logical inference, and a "non-thinking" mode for faster, general-purpose conversation. The model demonstrates strong performance in instruction-following, agent tool use, creative writing, and multilingual tasks across 100+ languages and dialects. It natively handles 32K token contexts and can extend to 131K tokens using YaRN-based scaling.

    by qwen131K context$0.10/M input tokens$0.45/M output tokens
  37. Meta: Llama 4 MaverickLlama 4 Maverick

    Llama 4 Maverick 17B Instruct (128E) is a high-capacity multimodal language model from Meta, built on a mixture-of-experts (MoE) architecture with 128 experts and 17 billion active parameters per forward pass (400B total). It supports multilingual text and image input, and produces multilingual text and code output across 12 supported languages. Optimized for vision-language tasks, Maverick is instruction-tuned for assistant-like behavior, image reasoning, and general-purpose multimodal interaction. Maverick features early fusion for native multimodality and a 1 million token context window. It was trained on a curated mixture of public, licensed, and Meta-platform data, covering ~22 trillion tokens, with a knowledge cutoff in August 2024. Released on April 5, 2025 under the Llama 4 Community License, Maverick is suited for research and commercial applications requiring advanced multimodal understanding and high model throughput.

    by meta-llama1.05M context$0.17/M input tokens$0.85/M output tokens$0.668/K input imgs
  38. Meta: Llama 4 ScoutLlama 4 Scout

    Llama 4 Scout 17B Instruct (16E) is a mixture-of-experts (MoE) language model developed by Meta, activating 17 billion parameters out of a total of 109B. It supports native multimodal input (text and image) and multilingual output (text and code) across 12 supported languages. Designed for assistant-style interaction and visual reasoning, Scout uses 16 experts per forward pass and features a context length of 10 million tokens, with a training corpus of ~40 trillion tokens. Built for high efficiency and local or commercial deployment, Llama 4 Scout incorporates early fusion for seamless modality integration. It is instruction-tuned for use in multilingual chat, captioning, and image understanding tasks. Released under the Llama 4 Community License, it was last trained on data up to August 2024 and launched publicly on April 5, 2025.

    by meta-llama10M context$0.10/M input tokens$0.50/M output tokens$0.334/K input imgs
  39. DeepSeek: DeepSeek V3 0324DeepSeek V3 0324

    DeepSeek V3, a 685B-parameter, mixture-of-experts model, is the latest iteration of the flagship chat model family from the DeepSeek team. It succeeds the DeepSeek V3 model and performs really well on a variety of tasks.

    by deepseek131K context$0.27/M input tokens$1.12/M output tokens
  40. Google: Gemma 3 12BGemma 3 12B

    Gemma 3 introduces multimodality, supporting vision-language input and text outputs. It handles context windows up to 128k tokens, understands over 140 languages, and offers improved math, reasoning, and chat capabilities, including structured outputs and function calling. Gemma 3 12B is the second largest in the family of Gemma 3 models after Gemma 3 27B

    by google131K context$0.05/M input tokens$0.10/M output tokens
  41. Google: Gemma 3 27BGemma 3 27B

    Gemma 3 introduces multimodality, supporting vision-language input and text outputs. It handles context windows up to 128k tokens, understands over 140 languages, and offers improved math, reasoning, and chat capabilities, including structured outputs and function calling. Gemma 3 27B is Google's latest open source model, successor to Gemma 2

    by google131K context$0.119/M input tokens$0.20/M output tokens
  42. Qwen: Qwen2.5 VL 72B InstructQwen2.5 VL 72B Instruct

    Qwen2.5-VL is proficient in recognizing common objects such as flowers, birds, fish, and insects. It is also highly capable of analyzing texts, charts, icons, graphics, and layouts within images.

    by qwen131K context$0.80/M input tokens$0.80/M output tokens
  43. DeepSeek: R1 Distill Qwen 32BR1 Distill Qwen 32B

    DeepSeek R1 Distill Qwen 32B is a distilled large language model based on Qwen 2.5 32B, using outputs from DeepSeek R1. It outperforms OpenAI's o1-mini across various benchmarks, achieving new state-of-the-art results for dense models.\n\nOther benchmark results include:\n\n- AIME 2024 pass@1: 72.6\n- MATH-500 pass@1: 94.3\n- CodeForces Rating: 1691\n\nThe model leverages fine-tuning from DeepSeek R1's outputs, enabling competitive performance comparable to larger frontier models.

    by deepseek128K context$0.30/M input tokens$0.30/M output tokens
  44. DeepSeek: R1 Distill Qwen 14BR1 Distill Qwen 14B

    DeepSeek R1 Distill Qwen 14B is a distilled large language model based on Qwen 2.5 14B, using outputs from DeepSeek R1. It outperforms OpenAI's o1-mini across various benchmarks, achieving new state-of-the-art results for dense models. Other benchmark results include: - AIME 2024 pass@1: 69.7 - MATH-500 pass@1: 93.9 - CodeForces Rating: 1481 The model leverages fine-tuning from DeepSeek R1's outputs, enabling competitive performance comparable to larger frontier models.

    by deepseek131K context$0.15/M input tokens$0.15/M output tokens
  45. DeepSeek: R1 Distill Llama 70BR1 Distill Llama 70B

    DeepSeek R1 Distill Llama 70B is a distilled large language model based on Llama-3.3-70B-Instruct, using outputs from DeepSeek R1. The model combines advanced distillation techniques to achieve high performance across multiple benchmarks, including: - AIME 2024 pass@1: 70.0 - MATH-500 pass@1: 94.5 - CodeForces Rating: 1633 The model leverages fine-tuning from DeepSeek R1's outputs, enabling competitive performance comparable to larger frontier models.

    by deepseek128K context$0.80/M input tokens$0.80/M output tokens
  46. DeepSeek: R1R1

    DeepSeek R1 is here: Performance on par with OpenAI o1, but open-sourced and with fully open reasoning tokens. It's 671B parameters in size, with 37B active in an inference pass. Fully open-source model & technical report. MIT licensed: Distill & commercialize freely!

    by deepseek164K context$0.70/M input tokens$2.50/M output tokens
  47. DeepSeek: DeepSeek V3DeepSeek V3

    DeepSeek-V3 is the latest model from the DeepSeek team, building upon the instruction following and coding abilities of the previous versions. Pre-trained on nearly 15 trillion tokens, the reported evaluations reveal that the model outperforms other open-source models and rivals leading closed-source models. For model details, please visit the DeepSeek-V3 repo for more information, or see the launch announcement.

    by deepseek131K context$0.40/M input tokens$1.30/M output tokens
  48. Meta: Llama 3.3 70B InstructLlama 3.3 70B Instruct

    The Meta Llama 3.3 multilingual large language model (LLM) is a pretrained and instruction tuned generative model in 70B (text in/text out). The Llama 3.3 instruction tuned text only model is optimized for multilingual dialogue use cases and outperforms many of the available open source and closed chat models on common industry benchmarks. Supported languages: English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai. Model Card

    by meta-llama131K context$0.13/M input tokens$0.39/M output tokens
  49. Qwen: Qwen2.5 7B InstructQwen2.5 7B Instruct

    Qwen2.5 7B is the latest series of Qwen large language models. Qwen2.5 brings the following improvements upon Qwen2: - Significantly more knowledge and has greatly improved capabilities in coding and mathematics, thanks to our specialized expert models in these domains. - Significant improvements in instruction following, generating long texts (over 8K tokens), understanding structured data (e.g, tables), and generating structured outputs especially JSON. More resilient to the diversity of system prompts, enhancing role-play implementation and condition-setting for chatbots. - Long-context Support up to 128K tokens and can generate up to 8K tokens. - Multilingual support for over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more. Usage of this model is subject to Tongyi Qianwen LICENSE AGREEMENT.

    by qwen131K context$0.07/M input tokens$0.07/M output tokens
  50. Meta: Llama 3.2 3B InstructLlama 3.2 3B Instruct

    Llama 3.2 3B is a 3-billion-parameter multilingual large language model, optimized for advanced natural language processing tasks like dialogue generation, reasoning, and summarization. Designed with the latest transformer architecture, it supports eight languages, including English, Spanish, and Hindi, and is adaptable for additional languages. Trained on 9 trillion tokens, the Llama 3.2 3B model excels in instruction-following, complex reasoning, and tool use. Its balanced performance makes it ideal for applications needing accuracy and efficiency in text generation across multilingual settings. Click here for the original model card. Usage of this model is subject to Meta's Acceptable Use Policy.

    by meta-llama131K context$0.03/M input tokens$0.05/M output tokens
  51. Qwen2.5 72B InstructQwen2.5 72B Instruct

    Qwen2.5 72B is the latest series of Qwen large language models. Qwen2.5 brings the following improvements upon Qwen2: - Significantly more knowledge and has greatly improved capabilities in coding and mathematics, thanks to our specialized expert models in these domains. - Significant improvements in instruction following, generating long texts (over 8K tokens), understanding structured data (e.g, tables), and generating structured outputs especially JSON. More resilient to the diversity of system prompts, enhancing role-play implementation and condition-setting for chatbots. - Long-context Support up to 128K tokens and can generate up to 8K tokens. - Multilingual support for over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more. Usage of this model is subject to Tongyi Qianwen LICENSE AGREEMENT.

    by qwen131K context$0.38/M input tokens$0.40/M output tokens
  52. Sao10K: Llama 3.1 Euryale 70B v2.2Llama 3.1 Euryale 70B v2.2

    Euryale L3.1 70B v2.2 is a model focused on creative roleplay from Sao10k. It is the successor of Euryale L3 70B v2.1.

    by sao10k131K context$1.48/M input tokens$1.48/M output tokens
  53. Sao10K: Llama 3 8B LunarisLlama 3 8B Lunaris

    Lunaris 8B is a versatile generalist and roleplaying model based on Llama 3. It's a strategic merge of multiple models, designed to balance creativity with improved logic and general knowledge. Created by Sao10k, this model aims to offer an improved experience over Stheno v3.2, with enhanced creativity and logical reasoning. For best results, use with Llama 3 Instruct context template, temperature 1.4, and min_p 0.1.

    by sao10k8K context$0.05/M input tokens$0.05/M output tokens
  54. Meta: Llama 3.1 8B InstructLlama 3.1 8B Instruct

    Meta's latest class of model (Llama 3.1) launched with a variety of sizes & flavors. This 8B instruct-tuned version is fast and efficient. It has demonstrated strong performance compared to leading closed-source models in human evaluations. To read more about the model release, click here. Usage of this model is subject to Meta's Acceptable Use Policy.

    by meta-llama131K context$0.02/M input tokens$0.05/M output tokens
  55. Mistral: Mistral NemoMistral Nemo

    A 12B parameter model with a 128k token context length built by Mistral in collaboration with NVIDIA. The model is multilingual, supporting English, French, German, Spanish, Italian, Portuguese, Chinese, Japanese, Korean, Arabic, and Hindi. It supports function calling and is released under the Apache 2.0 license.

    by mistralai131K context$0.04/M input tokens$0.17/M output tokens
  56. Sao10k: Llama 3 Euryale 70B v2.1Llama 3 Euryale 70B v2.1

    Euryale 70B v2.1 is a model focused on creative roleplay from Sao10k. - Better prompt adherence. - Better anatomy / spatial awareness. - Adapts much better to unique and custom formatting / reply formats. - Very creative, lots of unique swipes. - Is not restrictive during roleplays.

    by sao10k8K context$1.48/M input tokens$1.48/M output tokens
  57. NousResearch: Hermes 2 Pro - Llama-3 8BHermes 2 Pro - Llama-3 8B

    Hermes 2 Pro is an upgraded, retrained version of Nous Hermes 2, consisting of an updated and cleaned version of the OpenHermes 2.5 Dataset, as well as a newly introduced Function Calling and JSON Mode dataset developed in-house.

    by nousresearch8K context$0.14/M input tokens$0.14/M output tokens
  58. Meta: Llama 3 8B InstructLlama 3 8B Instruct

    Meta's latest class of model (Llama 3) launched with a variety of sizes & flavors. This 8B instruct-tuned version was optimized for high quality dialogue usecases. It has demonstrated strong performance compared to leading closed-source models in human evaluations. To read more about the model release, click here. Usage of this model is subject to Meta's Acceptable Use Policy.

    by meta-llama8K context$0.04/M input tokens$0.04/M output tokens
  59. Meta: Llama 3 70B InstructLlama 3 70B Instruct

    Meta's latest class of model (Llama 3) launched with a variety of sizes & flavors. This 70B instruct-tuned version was optimized for high quality dialogue usecases. It has demonstrated strong performance compared to leading closed-source models in human evaluations. To read more about the model release, click here. Usage of this model is subject to Meta's Acceptable Use Policy.

    by meta-llama8K context$0.51/M input tokens$0.74/M output tokens
  60. WizardLM-2 8x22BWizardLM-2 8x22B

    WizardLM-2 8x22B is Microsoft AI's most advanced Wizard model. It demonstrates highly competitive performance compared to leading proprietary models, and it consistently outperforms all existing state-of-the-art opensource models. It is an instruct finetune of Mixtral 8x22B. To read more about the model release, click here. #moe

    by microsoft66K context$0.62/M input tokens$0.62/M output tokens
  61. MythoMax 13BMythoMax 13B

    One of the highest performing and most popular fine-tunes of Llama 2 13B, with rich descriptions and roleplay. #merge

    by gryphe4K context$0.09/M input tokens$0.09/M output tokens