Skip to content
  1.  
  2. © 2023 – 2025 OpenRouter, Inc
    Favicon for SiliconFlow

    SiliconFlow

    Browse models provided by SiliconFlow (Terms of Service)

    33 models

    Tokens processed on OpenRouter

    • Qwen: Qwen3 Embedding 8BQwen3 Embedding 8B

      The Qwen3 Embedding model series is the latest proprietary model of the Qwen family, specifically designed for text embedding and ranking tasks. This series inherits the exceptional multilingual capabilities, long-text understanding, and reasoning skills of its foundational model. The Qwen3 Embedding series represents significant advancements in multiple text embedding and ranking tasks, including text retrieval, code retrieval, text classification, text clustering, and bitext mining.

      by qwen32K context$0.04/M input tokens$0/M output tokens
  3. inclusionAI: Ring 1TRing 1T

    Ring-1T has undergone continued scaling with large-scale verifiable reward reinforcement learning (RLVR) training, further unlocking the natural language reasoning capabilities of the trillion-parameter foundation model. Through RLHF training, the model's general abilities have also been refined, making this release of Ring-1T more balanced in performance across various tasks. Ring-1T adopts the Ling 2.0 architecture and is trained on the Ling-1T-base foundation model, which contains 1 trillion total parameters with 50 billion activated parameters, supporting a context window of up to 128K tokens.

    by inclusionai131K context$0.57/M input tokens$2.28/M output tokens
  4. inclusionAI: Ling-1TLing-1T

    Ling-1T is a trillion-parameter open-weight large language model developed by inclusionAI and released under the MIT license. It represents the first flagship non-thinking model in the Ling 2.0 series, built around a sparse-activation architecture with roughly 50 billion active parameters per token. The model supports up to 128 K tokens of context and emphasizes efficient reasoning through an “Evolutionary Chain-of-Thought (Evo-CoT)” training strategy. Pre-trained on more than 20 trillion reasoning-dense tokens, Ling-1T achieves strong results across code generation, mathematics, and logical reasoning benchmarks while maintaining high inference efficiency. It employs FP8 mixed-precision training, MoE routing with QK normalization, and MTP layers for compositional reasoning stability. The model also introduces LPO (Linguistics-unit Policy Optimization) for post-training alignment, enhancing sentence-level semantic control. Ling-1T can perform complex text generation, multilingual reasoning, and front-end code synthesis with a focus on both functionality and aesthetics.

    by inclusionai131K context$0.57/M input tokens$2.28/M output tokens
  5. Qwen: Qwen3 VL 30B A3B ThinkingQwen3 VL 30B A3B Thinking

    Qwen3-VL-30B-A3B-Thinking is a multimodal model that unifies strong text generation with visual understanding for images and videos. Its Thinking variant enhances reasoning in STEM, math, and complex tasks. It excels in perception of real-world/synthetic categories, 2D/3D spatial grounding, and long-form visual comprehension, achieving competitive multimodal benchmark results. For agentic use, it handles multi-image multi-turn instructions, video timeline alignments, GUI automation, and visual coding from sketches to debugged UI. Text performance matches flagship Qwen3 models, suiting document AI, OCR, UI assistance, spatial tasks, and agent research.

    by qwen0 context$0.29/M input tokens$1/M output tokens
  6. Qwen: Qwen3 VL 30B A3B InstructQwen3 VL 30B A3B Instruct

    Qwen3-VL-30B-A3B-Instruct is a multimodal model that unifies strong text generation with visual understanding for images and videos. Its Instruct variant optimizes instruction-following for general multimodal tasks. It excels in perception of real-world/synthetic categories, 2D/3D spatial grounding, and long-form visual comprehension, achieving competitive multimodal benchmark results. For agentic use, it handles multi-image multi-turn instructions, video timeline alignments, GUI automation, and visual coding from sketches to debugged UI. Text performance matches flagship Qwen3 models, suiting document AI, OCR, UI assistance, spatial tasks, and agent research.

    by qwen0 context$0.29/M input tokens$1/M output tokens
  7. Z.AI: GLM 4.6GLM 4.6

    Compared with GLM-4.5, this generation brings several key improvements: Longer context window: The context window has been expanded from 128K to 200K tokens, enabling the model to handle more complex agentic tasks. Superior coding performance: The model achieves higher scores on code benchmarks and demonstrates better real-world performance in applications such as Claude Code、Cline、Roo Code and Kilo Code, including improvements in generating visually polished front-end pages. Advanced reasoning: GLM-4.6 shows a clear improvement in reasoning performance and supports tool use during inference, leading to stronger overall capability. More capable agents: GLM-4.6 exhibits stronger performance in tool using and search-based agents, and integrates more effectively within agent frameworks. Refined writing: Better aligns with human preferences in style and readability, and performs more naturally in role-playing scenarios.

    by z-ai200K context$0.50/M input tokens$1.90/M output tokens
  8. DeepSeek: DeepSeek V3.2 ExpDeepSeek V3.2 Exp

    DeepSeek-V3.2-Exp is an experimental large language model released by DeepSeek as an intermediate step between V3.1 and future architectures. It introduces DeepSeek Sparse Attention (DSA), a fine-grained sparse attention mechanism designed to improve training and inference efficiency in long-context scenarios while maintaining output quality. Users can control the reasoning behaviour with the reasoning enabled boolean. Learn more in our docs The model was trained under conditions aligned with V3.1-Terminus to enable direct comparison. Benchmarking shows performance roughly on par with V3.1 across reasoning, coding, and agentic tool-use tasks, with minor tradeoffs and gains depending on the domain. This release focuses on validating architectural optimizations for extended context lengths rather than advancing raw task accuracy, making it primarily a research-oriented model for exploring efficient transformer designs.

    by deepseek131K context$0.27/M input tokens$0.41/M output tokens
  9. Qwen: Qwen3 VL 235B A22B ThinkingQwen3 VL 235B A22B Thinking

    Qwen3-VL-235B-A22B Thinking is a multimodal model that unifies strong text generation with visual understanding across images and video. The Thinking model is optimized for multimodal reasoning in STEM and math. The series emphasizes robust perception (recognition of diverse real-world and synthetic categories), spatial understanding (2D/3D grounding), and long-form visual comprehension, with competitive results on public multimodal benchmarks for both perception and reasoning. Beyond analysis, Qwen3-VL supports agentic interaction and tool use: it can follow complex instructions over multi-image, multi-turn dialogues; align text to video timelines for precise temporal queries; and operate GUI elements for automation tasks. The models also enable visual coding workflows, turning sketches or mockups into code and assisting with UI debugging, while maintaining strong text-only performance comparable to the flagship Qwen3 language models. This makes Qwen3-VL suitable for production scenarios spanning document AI, multilingual OCR, software/UI assistance, spatial/embodied tasks, and research on vision-language agents.

    by qwen131K context$0.45/M input tokens$3.50/M output tokens
  10. Qwen: Qwen3 VL 235B A22B InstructQwen3 VL 235B A22B Instruct

    Qwen3-VL-235B-A22B Instruct is an open-weight multimodal model that unifies strong text generation with visual understanding across images and video. The Instruct model targets general vision-language use (VQA, document parsing, chart/table extraction, multilingual OCR). The series emphasizes robust perception (recognition of diverse real-world and synthetic categories), spatial understanding (2D/3D grounding), and long-form visual comprehension, with competitive results on public multimodal benchmarks for both perception and reasoning. Beyond analysis, Qwen3-VL supports agentic interaction and tool use: it can follow complex instructions over multi-image, multi-turn dialogues; align text to video timelines for precise temporal queries; and operate GUI elements for automation tasks. The models also enable visual coding workflows—turning sketches or mockups into code and assisting with UI debugging—while maintaining strong text-only performance comparable to the flagship Qwen3 language models. This makes Qwen3-VL suitable for production scenarios spanning document AI, multilingual OCR, software/UI assistance, spatial/embodied tasks, and research on vision-language agents.

    by qwen131K context$0.30/M input tokens$1.50/M output tokens
  11. DeepSeek: DeepSeek V3.1 TerminusDeepSeek V3.1 Terminus

    DeepSeek-V3.1 Terminus is an update to DeepSeek V3.1 that maintains the model's original capabilities while addressing issues reported by users, including language consistency and agent capabilities, further optimizing the model's performance in coding and search agents. It is a large hybrid reasoning model (671B parameters, 37B active) that supports both thinking and non-thinking modes. It extends the DeepSeek-V3 base with a two-phase long-context training process, reaching up to 128K tokens, and uses FP8 microscaling for efficient inference. Users can control the reasoning behaviour with the reasoning enabled boolean. Learn more in our docs The model improves tool use, code generation, and reasoning efficiency, achieving performance comparable to DeepSeek-R1 on difficult benchmarks while responding more quickly. It supports structured tool calling, code agents, and search agents, making it suitable for research, coding, and agentic workflows.

    by deepseek131K context$0.27/M input tokens$1/M output tokens
  12. Qwen: Qwen3 Next 80B A3B InstructQwen3 Next 80B A3B Instruct

    Qwen3-Next-80B-A3B-Instruct is an instruction-tuned chat model in the Qwen3-Next series optimized for fast, stable responses without “thinking” traces. It targets complex tasks across reasoning, code generation, knowledge QA, and multilingual use, while remaining robust on alignment and formatting. Compared with prior Qwen3 instruct variants, it focuses on higher throughput and stability on ultra-long inputs and multi-turn dialogues, making it well-suited for RAG, tool use, and agentic workflows that require consistent final answers rather than visible chain-of-thought. The model employs scaling-efficient training and decoding to improve parameter efficiency and inference speed, and has been validated on a broad set of public benchmarks where it reaches or approaches larger Qwen3 systems in several categories while outperforming earlier mid-sized baselines. It is best used as a general assistant, code helper, and long-context task solver in production settings where deterministic, instruction-following outputs are preferred.

    by qwen262K context$0.14/M input tokens$1.40/M output tokens
  13. MoonshotAI: Kimi K2 0905Kimi K2 0905

    Kimi K2 0905 is the September update of Kimi K2 0711. It is a large-scale Mixture-of-Experts (MoE) language model developed by Moonshot AI, featuring 1 trillion total parameters with 32 billion active per forward pass. It supports long-context inference up to 256k tokens, extended from the previous 128k. This update improves agentic coding with higher accuracy and better generalization across scaffolds, and enhances frontend coding with more aesthetic and functional outputs for web, 3D, and related tasks. Kimi K2 is optimized for agentic capabilities, including advanced tool use, reasoning, and code synthesis. It excels across coding (LiveCodeBench, SWE-bench), reasoning (ZebraLogic, GPQA), and tool-use (Tau2, AceBench) benchmarks. The model is trained with a novel stack incorporating the MuonClip optimizer for stable large-scale MoE training.

    by moonshotai262K context$0.40/M input tokens$2/M output tokens
  14. StepFun: Step3Step3

    Step3 is a cutting-edge multimodal reasoning model—built on a Mixture-of-Experts architecture with 321B total parameters and 38B active. It is designed end-to-end to minimize decoding costs while delivering top-tier performance in vision–language reasoning. Through the co-design of Multi-Matrix Factorization Attention (MFA) and Attention-FFN Disaggregation (AFD), Step3 maintains exceptional efficiency across both flagship and low-end accelerators.

    by stepfun-ai66K context$0.57/M input tokens$1.42/M output tokens
  15. Qwen: Qwen3 30B A3B Thinking 2507Qwen3 30B A3B Thinking 2507

    Qwen3-30B-A3B-Thinking-2507 is a 30B parameter Mixture-of-Experts reasoning model optimized for complex tasks requiring extended multi-step thinking. The model is designed specifically for “thinking mode,” where internal reasoning traces are separated from final answers. Compared to earlier Qwen3-30B releases, this version improves performance across logical reasoning, mathematics, science, coding, and multilingual benchmarks. It also demonstrates stronger instruction following, tool use, and alignment with human preferences. With higher reasoning efficiency and extended output budgets, it is best suited for advanced research, competitive problem solving, and agentic applications requiring structured long-context reasoning.

    by qwen131K context$0.09/M input tokens$0.30/M output tokens
  16. DeepSeek: DeepSeek V3.1DeepSeek V3.1

    DeepSeek-V3.1 is a large hybrid reasoning model (671B parameters, 37B active) that supports both thinking and non-thinking modes via prompt templates. It extends the DeepSeek-V3 base with a two-phase long-context training process, reaching up to 128K tokens, and uses FP8 microscaling for efficient inference. Users can control the reasoning behaviour with the reasoning enabled boolean. Learn more in our docs The model improves tool use, code generation, and reasoning efficiency, achieving performance comparable to DeepSeek-R1 on difficult benchmarks while responding more quickly. It supports structured tool calling, code agents, and search agents, making it suitable for research, coding, and agentic workflows. It succeeds the DeepSeek V3-0324 model and performs well on a variety of tasks.

    by deepseek131K context$0.27/M input tokens$1/M output tokens
  17. OpenAI: gpt-oss-120bgpt-oss-120b

    gpt-oss-120b is an open-weight, 117B-parameter Mixture-of-Experts (MoE) language model from OpenAI designed for high-reasoning, agentic, and general-purpose production use cases. It activates 5.1B parameters per forward pass and is optimized to run on a single H100 GPU with native MXFP4 quantization. The model supports configurable reasoning depth, full chain-of-thought access, and native tool use, including function calling, browsing, and structured output generation.

    by openai131K context$0.05/M input tokens$0.45/M output tokens
  18. OpenAI: gpt-oss-20bgpt-oss-20b

    gpt-oss-20b is an open-weight 21B parameter model released by OpenAI under the Apache 2.0 license. It uses a Mixture-of-Experts (MoE) architecture with 3.6B active parameters per forward pass, optimized for lower-latency inference and deployability on consumer or single-GPU hardware. The model is trained in OpenAI’s Harmony response format and supports reasoning level configuration, fine-tuning, and agentic capabilities including function calling, tool use, and structured outputs.

    by openai131K context$0.04/M input tokens$0.18/M output tokens
  19. Qwen: Qwen3 Coder 30B A3B InstructQwen3 Coder 30B A3B Instruct

    Qwen3-Coder-30B-A3B-Instruct is a 30.5B parameter Mixture-of-Experts (MoE) model with 128 experts (8 active per forward pass), designed for advanced code generation, repository-scale understanding, and agentic tool use. Built on the Qwen3 architecture, it supports a native context length of 256K tokens (extendable to 1M with Yarn) and performs strongly in tasks involving function calls, browser use, and structured code completion. This model is optimized for instruction-following without “thinking mode”, and integrates well with OpenAI-compatible tool-use formats.

    by qwen0 context$0.07/M input tokens$0.28/M output tokens
  20. Qwen: Qwen3 30B A3B Instruct 2507Qwen3 30B A3B Instruct 2507

    Qwen3-30B-A3B-Instruct-2507 is a 30.5B-parameter mixture-of-experts language model from Qwen, with 3.3B active parameters per inference. It operates in non-thinking mode and is designed for high-quality instruction following, multilingual understanding, and agentic tool use. Post-trained on instruction data, it demonstrates competitive performance across reasoning (AIME, ZebraLogic), coding (MultiPL-E, LiveCodeBench), and alignment (IFEval, WritingBench) benchmarks. It outperforms its non-instruct variant on subjective and open-ended tasks while retaining strong factual and coding performance.

    by qwen131K context$0.09/M input tokens$0.30/M output tokens
  21. Z.AI: GLM 4.5 AirGLM 4.5 Air

    GLM-4.5-Air is the lightweight variant of our latest flagship model family, also purpose-built for agent-centric applications. Like GLM-4.5, it adopts the Mixture-of-Experts (MoE) architecture but with a more compact parameter size. GLM-4.5-Air also supports hybrid inference modes, offering a "thinking mode" for advanced reasoning and tool use, and a "non-thinking mode" for real-time interaction. Users can control the reasoning behaviour with the reasoning enabled boolean. Learn more in our docs

    by z-ai131K context$0.14/M input tokens$0.86/M output tokens
  22. Qwen: Qwen3 235B A22B Thinking 2507Qwen3 235B A22B Thinking 2507

    Qwen3-235B-A22B-Thinking-2507 is a high-performance, open-weight Mixture-of-Experts (MoE) language model optimized for complex reasoning tasks. It activates 22B of its 235B parameters per forward pass and natively supports up to 262,144 tokens of context. This "thinking-only" variant enhances structured logical reasoning, mathematics, science, and long-form generation, showing strong benchmark performance across AIME, SuperGPQA, LiveCodeBench, and MMLU-Redux. It enforces a special reasoning mode (</think>) and is designed for high-token outputs (up to 81,920 tokens) in challenging domains. The model is instruction-tuned and excels at step-by-step reasoning, tool use, agentic workflows, and multilingual tasks. This release represents the most capable open-source variant in the Qwen3-235B series, surpassing many closed models in structured reasoning use cases.

    by qwen262K context$0.13/M input tokens$0.60/M output tokens
  23. Qwen: Qwen3 Coder 480B A35BQwen3 Coder 480B A35B

    Qwen3-Coder-480B-A35B-Instruct is a Mixture-of-Experts (MoE) code generation model developed by the Qwen team. It is optimized for agentic coding tasks such as function calling, tool use, and long-context reasoning over repositories. The model features 480 billion total parameters, with 35 billion active per forward pass (8 out of 160 experts). Pricing for the Alibaba endpoints varies by context length. Once a request is greater than 128k input tokens, the higher pricing is used.

    by qwen1.05M context$0.25/M input tokens$1/M output tokens
  24. Qwen: Qwen3 235B A22B Instruct 2507Qwen3 235B A22B Instruct 2507

    Qwen3-235B-A22B-Instruct-2507 is a multilingual, instruction-tuned mixture-of-experts language model based on the Qwen3-235B architecture, with 22B active parameters per forward pass. It is optimized for general-purpose text generation, including instruction following, logical reasoning, math, code, and tool usage. The model supports a native 262K context length and does not implement "thinking mode" (<think> blocks). Compared to its base variant, this version delivers significant gains in knowledge coverage, long-context reasoning, coding benchmarks, and alignment with open-ended tasks. It is particularly strong on multilingual understanding, math reasoning (e.g., AIME, HMMT), and alignment evaluations like Arena-Hard and WritingBench.

    by qwen262K context$0.09/M input tokens$0.60/M output tokens
  25. Tencent: Hunyuan A13B InstructHunyuan A13B Instruct

    Hunyuan-A13B is a 13B active parameter Mixture-of-Experts (MoE) language model developed by Tencent, with a total parameter count of 80B and support for reasoning via Chain-of-Thought. It offers competitive benchmark performance across mathematics, science, coding, and multi-turn reasoning tasks, while maintaining high inference efficiency via Grouped Query Attention (GQA) and quantization support (FP8, GPTQ, etc.).

    by tencent33K context$0.14/M input tokens$0.57/M output tokens
  26. Baidu: ERNIE 4.5 300B A47B ERNIE 4.5 300B A47B

    ERNIE-4.5-300B-A47B is a 300B parameter Mixture-of-Experts (MoE) language model developed by Baidu as part of the ERNIE 4.5 series. It activates 47B parameters per token and supports text generation in both English and Chinese. Optimized for high-throughput inference and efficient scaling, it uses a heterogeneous MoE structure with advanced routing and quantization strategies, including FP8 and 2-bit formats. This version is fine-tuned for language-only tasks and supports reasoning, tool parameters, and extended context lengths up to 131k tokens. Suitable for general-purpose LLM applications with high reasoning and throughput demands.

    by baidu131K context$0.28/M input tokens$1.10/M output tokens
  27. MiniMax: MiniMax M1MiniMax M1

    MiniMax-M1 is a large-scale, open-weight reasoning model designed for extended context and high-efficiency inference. It leverages a hybrid Mixture-of-Experts (MoE) architecture paired with a custom "lightning attention" mechanism, allowing it to process long sequences—up to 1 million tokens—while maintaining competitive FLOP efficiency. With 456 billion total parameters and 45.9B active per token, this variant is optimized for complex, multi-step reasoning tasks. Trained via a custom reinforcement learning pipeline (CISPO), M1 excels in long-context understanding, software engineering, agentic tool use, and mathematical reasoning. Benchmarks show strong performance across FullStackBench, SWE-bench, MATH, GPQA, and TAU-Bench, often outperforming other open models like DeepSeek R1 and Qwen3-235B.

    by minimax1M context$0.55/M input tokens$2.20/M output tokens
  28. MoonshotAI: Kimi Dev 72BKimi Dev 72B

    Kimi-Dev-72B is an open-source large language model fine-tuned for software engineering and issue resolution tasks. Based on Qwen2.5-72B, it is optimized using large-scale reinforcement learning that applies code patches in real repositories and validates them via full test suite execution—rewarding only correct, robust completions. The model achieves 60.4% on SWE-bench Verified, setting a new benchmark among open-source models for software bug fixing and code reasoning.

    by moonshotai131K context$0.29/M input tokens$1.15/M output tokens
  29. DeepSeek: R1 0528R1 0528

    May 28th update to the original DeepSeek R1 Performance on par with OpenAI o1, but open-sourced and with fully open reasoning tokens. It's 671B parameters in size, with 37B active in an inference pass. Fully open-source model.

    by deepseek164K context$0.50/M input tokens$2.18/M output tokens
  30. Qwen: Qwen3 30B A3BQwen3 30B A3B

    Qwen3, the latest generation in the Qwen large language model series, features both dense and mixture-of-experts (MoE) architectures to excel in reasoning, multilingual support, and advanced agent tasks. Its unique ability to switch seamlessly between a thinking mode for complex reasoning and a non-thinking mode for efficient dialogue ensures versatile, high-quality performance. Significantly outperforming prior models like QwQ and Qwen2.5, Qwen3 delivers superior mathematics, coding, commonsense reasoning, creative writing, and interactive dialogue capabilities. The Qwen3-30B-A3B variant includes 30.5 billion parameters (3.3 billion activated), 48 layers, 128 experts (8 activated per task), and supports up to 131K token contexts with YaRN, setting a new standard among open-source models.

    by qwen131K context$0.09/M input tokens$0.45/M output tokens
  31. Qwen: Qwen3 32BQwen3 32B

    Qwen3-32B is a dense 32.8B parameter causal language model from the Qwen3 series, optimized for both complex reasoning and efficient dialogue. It supports seamless switching between a "thinking" mode for tasks like math, coding, and logical inference, and a "non-thinking" mode for faster, general-purpose conversation. The model demonstrates strong performance in instruction-following, agent tool use, creative writing, and multilingual tasks across 100+ languages and dialects. It natively handles 32K token contexts and can extend to 131K tokens using YaRN-based scaling.

    by qwen131K context$0.14/M input tokens$0.57/M output tokens
  32. DeepSeek: DeepSeek V3 0324DeepSeek V3 0324

    DeepSeek V3, a 685B-parameter, mixture-of-experts model, is the latest iteration of the flagship chat model family from the DeepSeek team. It succeeds the DeepSeek V3 model and performs really well on a variety of tasks.

    by deepseek131K context$0.25/M input tokens$1/M output tokens
  33. Qwen: QwQ 32BQwQ 32B

    QwQ is the reasoning model of the Qwen series. Compared with conventional instruction-tuned models, QwQ, which is capable of thinking and reasoning, can achieve significantly enhanced performance in downstream tasks, especially hard problems. QwQ-32B is the medium-sized reasoning model, which is capable of achieving competitive performance against state-of-the-art reasoning models, e.g., DeepSeek-R1, o1-mini.

    by qwen131K context$0.15/M input tokens$0.58/M output tokens
  34. Meta: Llama 3.1 8B InstructLlama 3.1 8B Instruct

    Meta's latest class of model (Llama 3.1) launched with a variety of sizes & flavors. This 8B instruct-tuned version is fast and efficient. It has demonstrated strong performance compared to leading closed-source models in human evaluations. To read more about the model release, click here. Usage of this model is subject to Meta's Acceptable Use Policy.

    by meta-llama131K context$0.06/M input tokens$0.06/M output tokens