The Qwen3.5 series 397B-A17B native vision-language model is built on a hybrid architecture that integrates a linear attention mechanism with a sparse mixture-of-experts model, achieving higher inference efficiency. It delivers state-of-the-art performance comparable to leading-edge models across a wide range of tasks, including language understanding, logical reasoning, code generation, agent-based tasks, image understanding, video understanding, and graphical user interface (GUI) interactions. With its robust code-generation and agent capabilities, the model exhibits strong generalization across diverse agent.