Skip to content
  1.  
  2. © 2023 – 2025 OpenRouter, Inc
    Favicon for intfloat

    intfloat

    Browse models from intfloat

    3 models

    Tokens processed on OpenRouter

    • Intfloat: E5-Large-v2E5-Large-v2
      1K tokens

      The e5-large-v2 embedding model maps English sentences, paragraphs, and documents into a 1024-dimensional dense vector space, delivering high-accuracy semantic embeddings optimized for retrieval, semantic search, reranking, and similarity-scoring tasks.

      by intfloat8K context$0.01/M input tokens$0/M output tokens
  3. Intfloat: E5-Base-v2E5-Base-v2
    300 tokens

    The e5-base-v2 embedding model encodes English sentences and paragraphs into a 768-dimensional dense vector space, producing efficient and high-quality semantic embeddings optimized for tasks such as semantic search, similarity scoring, retrieval and clustering.

    by intfloat8K context$0.005/M input tokens$0/M output tokens
  4. Intfloat: Multilingual-E5-LargeMultilingual-E5-Large
    716K tokens

    The multilingual-e5-large embedding model encodes sentences, paragraphs, and documents across over 90 languages into a 1024-dimensional dense vector space, delivering robust semantic embeddings optimized for multilingual retrieval, cross-language similarity, and large-scale data search.

    by intfloat8K context$0.01/M input tokens$0/M output tokens