Skip to content
  1.  
  2. © 2023 – 2025 OpenRouter, Inc
    Favicon for BaseTen

    Baseten

    Browse models provided by Baseten (Terms of Service)

    7 models

    Tokens processed on OpenRouter

    • Z.AI: GLM 4.6GLM 4.6

      Compared with GLM-4.5, this generation brings several key improvements: Longer context window: The context window has been expanded from 128K to 200K tokens, enabling the model to handle more complex agentic tasks. Superior coding performance: The model achieves higher scores on code benchmarks and demonstrates better real-world performance in applications such as Claude Code、Cline、Roo Code and Kilo Code, including improvements in generating visually polished front-end pages. Advanced reasoning: GLM-4.6 shows a clear improvement in reasoning performance and supports tool use during inference, leading to stronger overall capability. More capable agents: GLM-4.6 exhibits stronger performance in tool using and search-based agents, and integrates more effectively within agent frameworks. Refined writing: Better aligns with human preferences in style and readability, and performs more naturally in role-playing scenarios.

      by z-ai
    200K context
    $0.60/M input tokens$2.20/M output tokens
  3. MoonshotAI: Kimi K2 0905Kimi K2 0905

    Kimi K2 0905 is the September update of Kimi K2 0711. It is a large-scale Mixture-of-Experts (MoE) language model developed by Moonshot AI, featuring 1 trillion total parameters with 32 billion active per forward pass. It supports long-context inference up to 256k tokens, extended from the previous 128k. This update improves agentic coding with higher accuracy and better generalization across scaffolds, and enhances frontend coding with more aesthetic and functional outputs for web, 3D, and related tasks. Kimi K2 is optimized for agentic capabilities, including advanced tool use, reasoning, and code synthesis. It excels across coding (LiveCodeBench, SWE-bench), reasoning (ZebraLogic, GPQA), and tool-use (Tau2, AceBench) benchmarks. The model is trained with a novel stack incorporating the MuonClip optimizer for stable large-scale MoE training.

    by moonshotai262K context$0.60/M input tokens$2.50/M output tokens
  4. OpenAI: gpt-oss-120bgpt-oss-120b

    gpt-oss-120b is an open-weight, 117B-parameter Mixture-of-Experts (MoE) language model from OpenAI designed for high-reasoning, agentic, and general-purpose production use cases. It activates 5.1B parameters per forward pass and is optimized to run on a single H100 GPU with native MXFP4 quantization. The model supports configurable reasoning depth, full chain-of-thought access, and native tool use, including function calling, browsing, and structured output generation.

    by openai131K context$0.10/M input tokens$0.50/M output tokens
  5. Qwen: Qwen3 Coder 480B A35BQwen3 Coder 480B A35B

    Qwen3-Coder-480B-A35B-Instruct is a Mixture-of-Experts (MoE) code generation model developed by the Qwen team. It is optimized for agentic coding tasks such as function calling, tool use, and long-context reasoning over repositories. The model features 480 billion total parameters, with 35 billion active per forward pass (8 out of 160 experts). Pricing for the Alibaba endpoints varies by context length. Once a request is greater than 128k input tokens, the higher pricing is used.

    by qwen1.05M context$0.38/M input tokens$1.53/M output tokens
  6. Qwen: Qwen3 235B A22B Instruct 2507Qwen3 235B A22B Instruct 2507

    Qwen3-235B-A22B-Instruct-2507 is a multilingual, instruction-tuned mixture-of-experts language model based on the Qwen3-235B architecture, with 22B active parameters per forward pass. It is optimized for general-purpose text generation, including instruction following, logical reasoning, math, code, and tool usage. The model supports a native 262K context length and does not implement "thinking mode" (<think> blocks). Compared to its base variant, this version delivers significant gains in knowledge coverage, long-context reasoning, coding benchmarks, and alignment with open-ended tasks. It is particularly strong on multilingual understanding, math reasoning (e.g., AIME, HMMT), and alignment evaluations like Arena-Hard and WritingBench.

    by qwen262K context$0.22/M input tokens$0.80/M output tokens
  7. DeepSeek: R1 0528R1 0528

    May 28th update to the original DeepSeek R1 Performance on par with OpenAI o1, but open-sourced and with fully open reasoning tokens. It's 671B parameters in size, with 37B active in an inference pass. Fully open-source model.

    by deepseek164K context$2.55/M input tokens$5.95/M output tokens
  8. DeepSeek: DeepSeek V3 0324DeepSeek V3 0324

    DeepSeek V3, a 685B-parameter, mixture-of-experts model, is the latest iteration of the flagship chat model family from the DeepSeek team. It succeeds the DeepSeek V3 model and performs really well on a variety of tasks.

    by deepseek131K context$0.77/M input tokens$0.77/M output tokens