Skip to content
  •  
  • © 2023 – 2025 OpenRouter, Inc
      Favicon for Fireworks

      Fireworks

      Browse models provided by Fireworks (Terms of Service)

      16 models

      Tokens processed

      • Qwen: Qwen3 30B A3B

        Qwen3, the latest generation in the Qwen large language model series, features both dense and mixture-of-experts (MoE) architectures to excel in reasoning, multilingual support, and advanced agent tasks. Its unique ability to switch seamlessly between a thinking mode for complex reasoning and a non-thinking mode for efficient dialogue ensures versatile, high-quality performance. Significantly outperforming prior models like QwQ and Qwen2.5, Qwen3 delivers superior mathematics, coding, commonsense reasoning, creative writing, and interactive dialogue capabilities. The Qwen3-30B-A3B variant includes 30.5 billion parameters (3.3 billion activated), 48 layers, 128 experts (8 activated per task), and supports up to 131K token contexts with YaRN, setting a new standard among open-source models.

        by qwen131K context$0.15/M input tokens$0.60/M output tokens
      • Qwen: Qwen3 235B A22B

        Qwen3-235B-A22B is a 235B parameter mixture-of-experts (MoE) model developed by Qwen, activating 22B parameters per forward pass. It supports seamless switching between a "thinking" mode for complex reasoning, math, and code tasks, and a "non-thinking" mode for general conversational efficiency. The model demonstrates strong reasoning ability, multilingual support (100+ languages and dialects), advanced instruction-following, and agent tool-calling capabilities. It natively handles a 32K token context window and extends up to 131K tokens using YaRN-based scaling.

        by qwen131K context$0.22/M input tokens$0.88/M output tokens
      • Meta: Llama 4 Maverick

        Llama 4 Maverick 17B Instruct (128E) is a high-capacity multimodal language model from Meta, built on a mixture-of-experts (MoE) architecture with 128 experts and 17 billion active parameters per forward pass (400B total). It supports multilingual text and image input, and produces multilingual text and code output across 12 supported languages. Optimized for vision-language tasks, Maverick is instruction-tuned for assistant-like behavior, image reasoning, and general-purpose multimodal interaction. Maverick features early fusion for native multimodality and a 1 million token context window. It was trained on a curated mixture of public, licensed, and Meta-platform data, covering ~22 trillion tokens, with a knowledge cutoff in August 2024. Released on April 5, 2025 under the Llama 4 Community License, Maverick is suited for research and commercial applications requiring advanced multimodal understanding and high model throughput.

        by meta-llama1.05M context$0.22/M input tokens$0.88/M output tokens
      • Meta: Llama 4 Scout

        Llama 4 Scout 17B Instruct (16E) is a mixture-of-experts (MoE) language model developed by Meta, activating 17 billion parameters out of a total of 109B. It supports native multimodal input (text and image) and multilingual output (text and code) across 12 supported languages. Designed for assistant-style interaction and visual reasoning, Scout uses 16 experts per forward pass and features a context length of 10 million tokens, with a training corpus of ~40 trillion tokens. Built for high efficiency and local or commercial deployment, Llama 4 Scout incorporates early fusion for seamless modality integration. It is instruction-tuned for use in multilingual chat, captioning, and image understanding tasks. Released under the Llama 4 Community License, it was last trained on data up to August 2024 and launched publicly on April 5, 2025.

        by meta-llama10M context$0.15/M input tokens$0.60/M output tokens
      • Qwen: Qwen2.5 VL 32B Instruct

        Qwen2.5-VL-32B is a multimodal vision-language model fine-tuned through reinforcement learning for enhanced mathematical reasoning, structured outputs, and visual problem-solving capabilities. It excels at visual analysis tasks, including object recognition, textual interpretation within images, and precise event localization in extended videos. Qwen2.5-VL-32B demonstrates state-of-the-art performance across multimodal benchmarks such as MMMU, MathVista, and VideoMME, while maintaining strong reasoning and clarity in text-based tasks like MMLU, mathematical problem-solving, and code generation.

        by qwen33K context$0.90/M input tokens$0.90/M output tokens
      • DeepSeek: DeepSeek V3 0324

        DeepSeek V3, a 685B-parameter, mixture-of-experts model, is the latest iteration of the flagship chat model family from the DeepSeek team. It succeeds the DeepSeek V3 model and performs really well on a variety of tasks.

        by deepseek131K context$0.90/M input tokens$0.90/M output tokens
      • Qwen: QwQ 32B

        QwQ is the reasoning model of the Qwen series. Compared with conventional instruction-tuned models, QwQ, which is capable of thinking and reasoning, can achieve significantly enhanced performance in downstream tasks, especially hard problems. QwQ-32B is the medium-sized reasoning model, which is capable of achieving competitive performance against state-of-the-art reasoning models, e.g., DeepSeek-R1, o1-mini.

        by qwen131K context$0.90/M input tokens$0.90/M output tokens
      • DeepSeek: R1

        DeepSeek R1 is here: Performance on par with OpenAI o1, but open-sourced and with fully open reasoning tokens. It's 671B parameters in size, with 37B active in an inference pass. Fully open-source model & technical report. MIT licensed: Distill & commercialize freely!

        by deepseek164K context$3/M input tokens$8/M output tokens
      • DeepSeek: DeepSeek V3

        DeepSeek-V3 is the latest model from the DeepSeek team, building upon the instruction following and coding abilities of the previous versions. Pre-trained on nearly 15 trillion tokens, the reported evaluations reveal that the model outperforms other open-source models and rivals leading closed-source models. For model details, please visit the DeepSeek-V3 repo for more information, or see the launch announcement.

        by deepseek131K context$0.90/M input tokens$0.90/M output tokens
      • Meta: Llama 3.3 70B Instruct

        The Meta Llama 3.3 multilingual large language model (LLM) is a pretrained and instruction tuned generative model in 70B (text in/text out). The Llama 3.3 instruction tuned text only model is optimized for multilingual dialogue use cases and outperforms many of the available open source and closed chat models on common industry benchmarks. Supported languages: English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai. Model Card

        by meta-llama131K context$0.90/M input tokens$0.90/M output tokens
      • Qwen2.5 72B Instruct

        Qwen2.5 72B is the latest series of Qwen large language models. Qwen2.5 brings the following improvements upon Qwen2: - Significantly more knowledge and has greatly improved capabilities in coding and mathematics, thanks to our specialized expert models in these domains. - Significant improvements in instruction following, generating long texts (over 8K tokens), understanding structured data (e.g, tables), and generating structured outputs especially JSON. More resilient to the diversity of system prompts, enhancing role-play implementation and condition-setting for chatbots. - Long-context Support up to 128K tokens and can generate up to 8K tokens. - Multilingual support for over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more. Usage of this model is subject to Tongyi Qianwen LICENSE AGREEMENT.

        by qwen131K context$0.90/M input tokens$0.90/M output tokens
      • Meta: Llama 3.1 8B Instruct

        Meta's latest class of model (Llama 3.1) launched with a variety of sizes & flavors. This 8B instruct-tuned version is fast and efficient. It has demonstrated strong performance compared to leading closed-source models in human evaluations. To read more about the model release, click here. Usage of this model is subject to Meta's Acceptable Use Policy.

        by meta-llama131K context$0.20/M input tokens$0.20/M output tokens
      • Meta: Llama 3.1 405B Instruct

        The highly anticipated 400B class of Llama3 is here! Clocking in at 128k context with impressive eval scores, the Meta AI team continues to push the frontier of open-source LLMs. Meta's latest class of model (Llama 3.1) launched with a variety of sizes & flavors. This 405B instruct-tuned version is optimized for high quality dialogue usecases. It has demonstrated strong performance compared to leading closed-source models including GPT-4o and Claude 3.5 Sonnet in evaluations. To read more about the model release, click here. Usage of this model is subject to Meta's Acceptable Use Policy.

        by meta-llama131K context$3/M input tokens$3/M output tokens
      • Meta: Llama 3.1 70B Instruct

        Meta's latest class of model (Llama 3.1) launched with a variety of sizes & flavors. This 70B instruct-tuned version is optimized for high quality dialogue usecases. It has demonstrated strong performance compared to leading closed-source models in human evaluations. To read more about the model release, click here. Usage of this model is subject to Meta's Acceptable Use Policy.

        by meta-llama131K context$0.90/M input tokens$0.90/M output tokens
      • 01.AI: Yi Large

        The Yi Large model was designed by 01.AI with the following usecases in mind: knowledge search, data classification, human-like chat bots, and customer service. It stands out for its multilingual proficiency, particularly in Spanish, Chinese, Japanese, German, and French. Check out the launch announcement to learn more.

        by 01-ai33K context$3/M input tokens$3/M output tokens
      • Mistral: Mixtral 8x22B Instruct

        Mistral's official instruct fine-tuned version of Mixtral 8x22B. It uses 39B active parameters out of 141B, offering unparalleled cost efficiency for its size. Its strengths include: - strong math, coding, and reasoning - large context length (64k) - fluency in English, French, Italian, German, and Spanish See benchmarks on the launch announcement here. #moe

        by mistralai66K context$0.90/M input tokens$0.90/M output tokens